下载此文档

2022-2023学年北京市一零一中学中考五模数学试题含解析.doc


文档分类:中学教育 | 页数:约25页 举报非法文档有奖
1/25
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/25 下载此文档
文档列表 文档介绍
该【2022-2023学年北京市一零一中学中考五模数学试题含解析 】是由【xinyala】上传分享,文档一共【25】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年北京市一零一中学中考五模数学试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列各式中,不是多项式2x2﹣4x+2的因式的是(  )
A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
2.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是(  )
A. B. C. D.
3.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是(  )
A.(12)2016 B.(12)2017 C.(33)2016 D.(33)2017
4.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是
A.3 B. C. D.4
5.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=(  )
A.3 B.4 C.5 D.6
6.《九章算术》是中国古代第一部数学专著,它对我载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )
A. B.
C. D.
7.下列四个不等式组中,解集在数轴上表示如图所示的是(  )
A. B. C. D.
8.函数(为常数)的图像上有三点,,,则函数值的大小关系是( )
A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y1
9.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
10.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是( )
A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y3
二、填空题(共7小题,每小题3分,满分21分)
11.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.
12.若,则= .
13.太极揉推器是一种常见的健身器材.基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C到立柱顶点B的距离为25cm.支架CD,CE与立柱AB的夹角∠BCD=∠BCE=45°,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CD⊥FG,CE⊥MN,则两个转盘的最低点F,N距离地面的高度差为_____cm.(结果保留根号)
14.若方程 x2+(m2﹣1)x+1+m=0的两根互为相反数,则 m=______
15.当a<0,b>0时.化简:=_____.
16.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.
17.如图,在△ABC中,AB=2,BC=,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_____.
三、解答题(共7小题,满分69分)
18.(10分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,,.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,
(1)求DF的长;
(2)求点E到墙壁AB所在直线的距离.(.参考数据:sin35°≈,cos35°≈,tan35°≈)
19.(5分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
(1)求抛物线的解析式及点D的坐标;
(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.
20.(8分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=
(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为w(单位:万元)
①求w关于t的函数解析式;
②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.
21.(10分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:
进价元只
售价元只
甲种节能灯
30
40
乙种节能灯
35
50
求甲、乙两种节能灯各进多少只?
全部售完100只节能灯后,该商场获利多少元?
22.(10分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
“读书节“活动计划书
书本类别
科普类
文学类
进价(单位:元)
18
12
备注
(1)用不超过16800元购进两类图书共1000本;
(2)科普类图书不少于600本;

(1),若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;
(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
23.(12分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
24.(14分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.
(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;
(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
原式分解因式,判断即可.
【详解】
原式=2(x2﹣2x+1)=2(x﹣1)2。
故选:D.
【点睛】
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
2、B
【解析】
试题解析:由图可知可以瞄准的点有2个.

∴B球一次反弹后击中A球的概率是.
故选B.
3、C
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=,则B2C2===()1,
同理可得:B3C3==()2,
故正方形AnBnCnDn的边长是:()n﹣1.
则正方形A2017B2017C2017D2017的边长是:()2.
故选C.
“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
4、B
【解析】
试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.
连接AC,
∵∠AOC=∠ADC=90°,AC=AC,OC=CD,
∴Rt△AOC≌Rt△ADC,
∴AD=AO=2,
连接CD,设EF=x,
∴DE2=EF•OE,
∵CF=1,
∴DE=,
∴△CDE∽△AOE,
∴=,
即=,
解得x=,
S△ABE===.
故选B.
考点:1.切线的性质;2.三角形的面积.
5、D
【解析】
欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1.
【详解】
∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,
则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故选D.
6、C
【解析】
根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,
故选C.
点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.
7、D
【解析】
此题涉及的知识点是不等式组的表示方法,根据规律可得答案.
【详解】
由解集在数轴上的表示可知,该不等式组为,
故选D.
【点睛】
本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.
8、A
【解析】
试题解析:∵函数y=(a为常数)中,-a1-1<0,
∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,
∵>0,
∴y3<0;
∵-<-,
∴0<y1<y1,
∴y3<y1<y1.
故选A.
9、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.不是轴对称图形,也不是中心对称图形.故错误;
B.不是轴对称图形,也不是中心对称图形.故错误;
C.是轴对称图形,也是中心对称图形.故正确;
D.不是轴对称图形,是中心对称图形.故错误.
故选C.
【点睛】
掌握好中心对称图形与轴对称图形的概念.
轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;
中心对称图形是要寻找对称中心,旋转180°后与原图重合.
10、A
【解析】
作出反比例函数的图象(如图),即可作出判断:
∵-3<1,
∴反比例函数的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.
∴当x1<x2<1<x3时,y3<y1<y2.故选A.
二、填空题(共7小题,每小题3分,满分21分)
11、1

2022-2023学年北京市一零一中学中考五模数学试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数25
  • 收藏数0 收藏
  • 顶次数0
  • 上传人xinyala
  • 文件大小795 KB
  • 时间2025-01-22