下载此文档

2022年宁波市重点中学九年级数学第一学期期末学业水平测试试题含解析.doc


文档分类:中学教育 | 页数:约19页 举报非法文档有奖
1/19
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/19 下载此文档
文档列表 文档介绍
该【2022年宁波市重点中学九年级数学第一学期期末学业水平测试试题含解析 】是由【1875892****】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【2022年宁波市重点中学九年级数学第一学期期末学业水平测试试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是(  )
A.2 B.1 C.4 D.2
2.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是
A.相离 B.相切 C.相交 D.无法判断
3.方程x2-4=0的解是
A.x=2 B.x=-2 C.x=±2 D.x=±4
4.2019的相反数是( )
A. B.﹣ C.|2019| D.﹣2019
5.下列说法错误的是(  )
A.必然事件发生的概率是1
B.通过大量重复试验,可以用频率估计概率
C.概率很小的事件不可能发生
D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得
6.如图,在直线上有相距的两点和(点在点的右侧),以为圆心作半径为的圆,(点始终在直线上),则与直线在______秒时相切.
A.3 B. C.3或4 D.
7.要得到函数y=2(x-1)2+3的图像,可以将函数y=2x2的图像( )
A.向左平移1个单位长度,再向上平移3个单位长度
B.向左平移1个单位长度,再向下平移3个单位长度
C.向右平移1个单位长度,再向上平移3个单位长度
D.向右平移1个单位长度,再向下平移3个单位长度
8.抛物线的顶点坐标是( )
A.(2, 1) B.(2, -1) C.(-2, 1) D.(-2, -1)
9.商场举行摸奖促销活动,对于“”.下列说法正确的是( )
A.抽101次也可能没有抽到一等奖
B.抽100次奖必有一次抽到一等奖
C.抽一次不可能抽到一等奖
D.抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖
10.对于二次函数y=(x-1)2+2的图象,下列说法正确的是( )
A.开口向下 B.当x=-1,时,y有最大值是2 C.对称轴是x=-1 D.顶点坐标是(1,2)
11.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )
A. B. C. D.
12.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=(  )
A.
B.
C.
D.
二、填空题(每题4分,共24分)
13.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.
14.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径为______寸.
15.二次函数y=图像的顶点坐标是__________.
16.如图,在反比例函数的图象上有点它们的横坐标依次为2,4,6,8,10,分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为则点的坐标为________,阴影部分的面积________.
17.在一个暗箱里放有m个除颜色外其他完全相同的小球,这m个小球中红球只有4个,每次将球搅匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算m大约是_____.
18.抛物线的顶点坐标是____________
三、解答题(共78分)
19.(8分)请回答下列问题.
(1)计算:
(2)解方程:
20.(8分)已知:如图,在半圆中,直径的长为6,点是半圆上一点,过圆心作的垂线交线段的延长线于点,交弦于点.
(1)求证:;
(2)记,,求关于的函数表达式;
(3)若,求图中阴影部分的面积.
21.(8分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A,B,C在同一条直线上,在箱体底端装有圆形的滚筒轮⊙A,⊙A与水平地面相切于点D,在拉杆伸长到最大的情况下,当点B距离水平地面34cm时,∥ MN.
(1)求⊙A的半径.
(2)当人的手自然下垂拉旅行箱时,人感到较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为76cm,∠CAF=64°,求此时拉杆BC的伸长距离(结果精确到1cm,参考数据:sin64°≈,cos64°≈,tan64°≈).
22.(10分)在平面直角坐标系中,将一块等腰直角三角板(△ABC)按如图所示放置,若AO=2,OC=1,∠ACB=90°.
(1)直接写出点B的坐标是  ;
(2)如果抛物线l:y=ax2﹣ax﹣2经过点B,试求抛物线l的解析式;
(3)把△ABC绕着点C逆时针旋转90°后,顶点A的对应点A1是否在抛物线l上?为什么?
(4)在x轴上方,抛物线l上是否存在一点P,使由点A,C,B,P构成的四边形为中心对称图形?若存在,求出点P的坐标;若不存在,请说明理由.
23.(10分)阅读对话,解答问题:
(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;
(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.
24.(10分)已知点M(2,a)在反比例函数y=(k≠0)的图象上,点M关于原点中心对称的点N在一次函数y=﹣2x+8的图象上,求此反比例函数的解析式.
25.(12分)某果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果(千克),增种果树(棵), 它们之间的函数关系如图所示.
(1)求与之间的函数关系式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
26.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2).(正方形网格中每个小正方形的边长是一个单位长度),
(1)在正方形网格中画出△ABC绕点O顺时针旋转90°得到△A1B1C1.
(2)求出线段OA旋转过程中所扫过的面积(结果保留π).
参考答案
一、选择题(每题4分,共48分)
1、A
【解析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.
【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,
∴C(1,2),则CD的长度是2,
故选A.
【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.
2、C
【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,
∵⊙O的半径为6,圆心O到直线l的距离为5,
∴6>5,即:d<r.
∴直线l与⊙O的位置关系是相交.故选C.
3、C
【分析】方程变形为x1=4,再把方程两边直接开方得到x=±1.
【详解】解:x1=4,
∴x=±1.
故选C.
4、D
【解析】根据只有符号不同的两个数互为相反数,可得答案
【详解】2019的相反数是﹣2019,故选D.
【点睛】
此题考查相反数,掌握相反数的定义是解题关键
5、C
【解析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1
【详解】A、必然事件发生的概率是1,正确;
B、通过大量重复试验,可以用频率估计概率,正确;
C、概率很小的事件也有可能发生,故错误;
D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,
故选:C.
【点睛】
本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0≤p≤1,其中必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0;随机事件,,概率越接近与1,事件发生的可能性越小,概率越接近于0.
6、C
【分析】根据与直线AB的相对位置分类讨论:当在直线AB左侧并与直线AB相切时,根据题意,先计算运动的路程,从而求出运动时间;当在直线AB右侧并与直线AB相切时,原理同上.
【详解】解:当在直线AB左侧并与直线AB相切时,如图所示
∵的半径为1cm,AO=7cm
∴运动的路程=AO-=6cm
∵以的速度向右移动
∴此时的运动时间为:÷2=3s;
当在直线AB右侧并与直线AB相切时,如图所示
∵的半径为1cm,AO=7cm
∴运动的路程=AO+=8cm
∵以的速度向右移动
∴此时的运动时间为:÷2=4s;
综上所述:与直线在3或4秒时相切
故选:C.
【点睛】
此题考查的是直线与圆的位置关系:相切和动圆问题,掌握相切的定义和行程问题公式:时间=路程÷速度是解决此题的关键.
7、C
【解析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.
【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),
∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3
故选:C.
【点睛】
本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.
8、C
【分析】已知抛物线的顶点式可直接写出顶点坐标.
【详解】解:由抛物线的顶点坐标可知,抛物线y=(x+2)2+1的顶点坐标是(-2,1).
故选C.
【点睛】
本题考查的是抛物线的顶点坐标,即抛物线y=(x+a)2+h中,其顶点坐标为(-a,h).
9、A
【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.
【详解】解:根据概率的意义可得“”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖,抽101次也可能没有抽到一等奖.
故选:A.
【点睛】
本题考查概率的意义,概率是对事件发生可能性大小的量的表现.
10、D
【解析】根据二次函数的性质对各选项进行判断.
【详解】A、由二次函数的解析式y=(x+1)2+2,可知系数>1,;B、将x=﹣1代入解析式,得到y=6,故B项错误;C、由二次函数的顶点式y=(x+1)2+2可知对称轴为x=1,故C项错误;D、函数的顶点式y=(x+1)2+2可知该函数的顶点坐标是(1,2),.
【点睛】
本题主要考查二次函数的图像与性质,理解二次函数的顶点式是解答此题的关键.
11、D
【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.
【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;
B、∵x1<x2,
∴△=b2-4ac>0,故本选项错误;
C、若a>0,则x1<x0<x2,
若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;
D、若a>0,则x0-x1>0,x0-x2<0,
所以,(x0-x1)(x0-x2)<0,
∴a(x0-x1)(x0-x2)<0,
若a<0,则(x0-x1)与(x0-x2)同号,
∴a(x0-x1)(x0-x2)<0,
综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.
12、C
【解析】根据圆内接四边形的性质求出∠A的度数,再根据圆周角定理求解即可.
【详解】∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,
∴∠A+∠BCD=180°,
∴∠A=50°,
由圆周角定理得,2∠A=∠BOD=100°,
故选C.
【点睛】
本题考查了圆内接四边形的性质,圆周角定理,熟练掌握圆内接四边形的对角互补是解题的关键.
二、填空题(每题4分,共24分)
13、(9,0)
【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),
所以位似中心的坐标为(9,0).
故答案为:(9,0).
14、1.
【分析】设的半径为,在中,,则有,解方程即可.
【详解】设的半径为.
在中,,
则有,
解得,
∴的直径为1寸,
故答案为1.

2022年宁波市重点中学九年级数学第一学期期末学业水平测试试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数19
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1875892****
  • 文件大小1.03 MB
  • 时间2025-01-23
最近更新