下载此文档

2022-2023学年河南省三门峡卢氏县联考数学八年级第一学期期末经典试题含解析.doc


文档分类:中学教育 | 页数:约24页 举报非法文档有奖
1/24
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/24 下载此文档
文档列表 文档介绍
该【2022-2023学年河南省三门峡卢氏县联考数学八年级第一学期期末经典试题含解析 】是由【286919636】上传分享,文档一共【24】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年河南省三门峡卢氏县联考数学八年级第一学期期末经典试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.分式方程的解是(  )
A.x=1 B.x=-1 C.x=2 D.x=-2
2.下列各式中计算正确的是( )
A. B. C. D.
3.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么 的值为( ).
A.49 B.25 C.13 D.1
4.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是( )
A.
B.
C.
D.
5.如图,在中,cm,cm,点D、E分别在AC、BC上,现将沿DE翻折,使点C落在点处,连接,则长度的最小值 ( )
A.不存在 B.等于 1cm
C.等于 2 cm D.等于 cm
6.9的平方根是( )
A. B.81 C. D.3
7.检验x=-2是下列哪个方程的解( )
A. B. C. D.
8.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)(  )
A. B. C. D.
9.为了能直观地反映我国奥运代表团在近八届奥运会上所获奖牌总数变化情况,以下最适合使用的统计图是( )
A.条形统计图 B.扇形统计图 C.折线统计图 D.三种都可以
10.如图,与是两个全等的等边三角形,,下列结论不正确的是( )
A. B.直线垂直平分
C. D.四边形是轴对称图形
11.如图,已知AD=CB,添加下列条件还不能判定△ABC≌△BAD的是(  )
A.AC=BD B.∠DAB=∠CBA C.∠CAB=∠DBA D.∠C=∠D=90°
12.在平面直角坐标系中,点M(2,-1)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(每题4分,共24分)
13.花粉的质量很小. 037毫克, 037毫克可用科学记数法表示为________毫克.
14.已知a+b=1,ab=,则a3b-2a2b2+ ab3=(__________).
15.若关于的二元一次方程组的解是一对相反数,则实数__________.
16.若a<b,则-5a______-5b(填“>”“<”或“=”).
17.如图,在等腰三角形中,,为边上中点,过点作,交于,交于,若,则的长为_________.
18.分式方程=的解为_____.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B(0,m)、C(0,n)两点,且m、n(m>n)满足方程组的解.
(1)求证:AC⊥AB;
(2)若点D在直线AC上,且DB=DC,求点D的坐标;
(3)在(2)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.
20.(8分)已知,为直线上一点,为直线外一点,连结.
(1)用直尺、圆规在直线上作点,使为等腰三角形(作出所有符合条件的点,保留痕迹).
(2)设,若(1)中符合条件的点只有两点,直接写出的值.
21.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.
22.(10分)把下列多项式分解因式:
(1)
(2)
23.(10分)综合与实践
阅读以下材料:
定义:两边分别相等且夹角互补的两个三角形叫做“互补三角形”.
用符号语言表示为:如图①,在△ABC与△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC与△DEF是互补三角形.
反之,“如果△ABC与△DEF是互补三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.
自主探究
利用上面所学知识以及全等三角形的相关知识解决问题:
(1)性质:互补三角形的面积相等
如图②,已知△ABC与△DEF是互补三角形.
求证:△ABC与△DEF的面积相等.
证明:分别作△ABC与△DEF的边BC,EF上的高线,则∠AGC=∠DHE=90°.
…… (将剩余证明过程补充完整)
(2)互补三角形一定不全等,请你判断该说法是否正确,并说明理由,如果不正确,请举出一个反例,画出示意图.
24.(10分)如图1,△ABC是边长为8的等边三角形,AD⊥BC下点D,DE⊥AB于点E
(1)求证:AE=3EB;
(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF的最小值及此时BP的长;
(3)在(2)的条件下,连接EF,若AD=,当PE+PF取最小值时,△PEF的面积是   .
25.(12分)如图是一个正方体展开图,已知正方体相对两面的代数式的值相等;
(1)求a、b、c 的值;
(2)判断a+b﹣c的平方根是有理数还是无理数.
26.如图(1),,,垂足为A,B,,点在线段上以每秒2的速度由点向点运动,同时点在线段上由点向点运动.它们运动的时间为().
(1)     ,     ;(用的代数式表示)
(2)如点的运动速度与点的运动速度相等,当时,与是否全等,并判断此时线段和线段的位置关系,请分别说明理由;
(3)如图(2),将图(1)中的“,”,改为“”,其他条件不变.设点的运动速度为,是否存在有理数,与是否全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、B
【解析】根据分式方程的求解方法解题,注意检验根的情况;
【详解】解:,
两侧同时乘以,可得

解得;
经检验是原方程的根;
故选:B.
【点睛】
本题考查分式方程的解法;熟练掌握分式方程的方法是解题的关键.
2、D
【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.
【详解】A、,此选项错误错误,不符合题意;
B、,此选项错误错误,不符合题意;
C、,此选项错误错误,不符合题意;
D、,此选项正确,符合题意;
故选:D.
【点睛】
本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.
3、A
【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.
【详解】
根据题意,结合勾股定理a2+b2=25,
四个三角形的面积=4×ab=25-1=24,
∴2ab=24,
联立解得:(a+b)2=25+24=1.
故选A.
4、B
【详解】x﹣3≤3x+1,
移项,得x-3x≤1+3,
合并同类项,得-2x≤4,
系数化为1,得x≥﹣2,
其数轴上表示为:

故选B.
5、C
【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.
【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,
∵∠C=90°,AC=4cm,BC=3cm,
∴AB=5cm,
由折叠的性质知,BC′=BC=3cm,
∴AC′=AB-BC′=2cm.
故选:C.
【点睛】
本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.
6、C
【分析】根据平方根的定义求解即可.
【详解】9的平方根是±3
故选:C
【点睛】
本题考查的是平方根,理解平方根的定义是关键.
7、B
【分析】把x=−2代入各选项中的方程进行一一验证即可.
【详解】解:A、当x=−2时,左边=,右边=,左边≠右边,所以x=−2不是该方程的解.故本选项错误;
B、当x=−2时,左边==右边,所以x=−2是该方程的解.故本选项正确;
C、当x=−2时,左边=≠右边,所以x=−2不是该方程的解.故本选项错误;
D、当x=−2时,方程的左边的分母等于零,故本选项错误;
故选:B.
【点睛】
本题考查了分式方程的解,注意分式的分母不能等于零.
8、D
【分析】过A作河岸的垂线AH,在直线AH上取点I,使AI等于河宽,连接BI即可得出N,作出MN⊥a即可得到M,连接AM即可.
【详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM+BN最短就符合题意,
即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河岸b于N,作MN垂直于河岸交河岸a于M点,连接AM.
故选D.
【点睛】
本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M、N的位置.
9、C
【分析】由扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目,据此可得答案.
【详解】为了直观地表示我国体育健儿在最近八届夏季奥运会上获得奖牌总数的变化趋势,
结合统计图各自的特点,应选择折线统计图.
故选C.
【点睛】
本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.
10、A
【分析】根据与是两个全等的等边三角形,可得到,,,然后结合,先计算出的大小,便可计算出的大小,从而判定出AD与BC的位置关系及BE与DC的关系,同时也由于与是等腰三角形,也容易确定四边形ABCD的对称性.
【详解】(1)∵与是两个全等的等边三角形
∴,,



∴,
∴,所以选项A错误;
(2)由(1)得:

∴,所以选项C正确;
(3)延长BE交CD于点F,连接BD.
∵,




在与中


∴,综上,BE垂直平分CD,所以答案B正确;
(4)过E作,由得
而和是等腰三角形,则MN垂直平分AD、BC,所以四边形ABCD是軕对称图形,所以选项B正确.

2022-2023学年河南省三门峡卢氏县联考数学八年级第一学期期末经典试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数24
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小1.02 MB
  • 时间2025-01-28