下载此文档

2022年山东省威海乳山市数学八上期末考试模拟试题含解析.doc


文档分类:中学教育 | 页数:约24页 举报非法文档有奖
1/24
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/24 下载此文档
文档列表 文档介绍
该【2022年山东省威海乳山市数学八上期末考试模拟试题含解析 】是由【guwutang】上传分享,文档一共【24】页,该文档可以免费在线阅读,需要了解更多关于【2022年山东省威海乳山市数学八上期末考试模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.下列调查中,最适合采用全面调查的是( )
A.端午节期间市场上粽子质量 B.某校九年级三班学生的视力
C.央视春节联欢晚会的收视率 D.某品牌手机的防水性能
2.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )
A.25 B.25或20 C.20 D.15
3.某厂计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,列出的正确方程为(  )
A. B. C. D.
4.如图,在 Rt△ABC 中,∠BAC=90°,AB=6,AC=8,D 为 AC 上一点,将△ABD 沿 BD 折叠,使点 A 恰好落在 BC 上的 E 处,则折痕 BD 的长是( )
A.5 B. C.3 D.
5.在式子,,,中,分式的个数是( )
A.1 B.2 C.3 D.4
6.如果m是的整数部分,则m的值为(  )
A.1 B.2 C.3 D.4
7.如图,,,,则对于结论:①,②,③,④,其中正确的是( )
A.①② B.①③④ C.①②③④ D.①③
8.如图,已知为的中点,若,则( )
A.5 B.6 C.7 D.
9.若等腰三角形的两边长分别为6和8,则周长为(  )
A.20或22 B.20 C.22 D.无法确定
10.下列四个图形中轴对称图形的个数是( )

A.1 B.2 C.3 D.4
二、填空题(每小题3分,共24分)
11.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:.(填所有正确说法的序号)
12.如果正方形的边长为4,为边上一点,,为线段上一点,射线交正方形的一边于点,且,那么的长为__________.
13.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则方程组的解是______.
14.分解因式:=    .
15.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校2000名学生有______名学生是骑车上学的.
16.在平行四边形中,,,,那么的取值范围是______.
17.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被墨水弄污了,你认为□处应填写_________.
18.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,,,,点、在轴上且关于轴对称.

(1)求点的坐标;
(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;
(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长.
20.(6分)甲、乙两名战士在相同条件下各射击10次,每次命中的环数如下:
甲:8,6,7,8,9,10,6,5,4,7
乙:7,9,8,5,6,7,7,6,7,8
(1)分别计算以上两组数据的平均数;
(2)分别计算以上两组数据的方差.
21.(6分)已知一次函数y=﹣x+4与x轴交于点A,与y轴交于点C,∠CAO=30°,B点在第一象限,四边形OABC为长方形,将B点沿直线AC对折,得到点D,连接点CD交x轴于点E.
(1)M是直线AC上一个动点,N是y轴上一个动点,求出周长的最小值;
(2)点P为y轴上一动点,作直线AP交直线CD于点Q,将直线AP绕着点A旋转,在旋转过程中,与直线CD交于Q.请问,在旋转过程中,是否存在点P使得为等腰三角形?如果存在,请求出∠OAP的度数;如果不存在,请说明理由.
22.(8分)如图1,直线AB交x轴于点A(4 ,0),交y轴于点B(0 ,-4),
(1)如图,若C的坐标为(-1, ,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;
(2)在(1)的条件下,如图2,连接OH,求证:∠OHP=45°;
(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连结MD,过点D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.
23.(8分)把下列多项式分解因式:
(1); (2)
(3); (4).
24.(8分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
25.(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点 ,与直线相交于点 ,
(1)求直线 的函数表达式;
(2)求 的面积;
(3)在 轴上是否存在一点 ,使是等腰三角形.若不存在,请说明理由;若存在,请直接写出点 的坐标
26.(10分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,,,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′,求小巷有多宽.
参考答案
一、选择题(每小题3分,共30分)
1、B
【分析】直接利用全面调查与抽样调查的意义分析得出答案.
【详解】解:A.调查端午节期间市场上粽子质量适合抽样调查;
B.某校九年级三班学生的视力适合全面调查;
C.调查央视春节联欢晚会的收视率适合抽样调查;
D.某品牌手机的防水性能适合抽样调查;
故选:B.
【点睛】
本题考查了全面调查与抽样调查,正确理解全面调查与抽样调查的意义是解题的关键.
2、A
【分析】题目给出等腰三角形有两条边长为5和10,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】分两种情况:
当腰为5时,5+5=10,所以不能构成三角形;
当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=1.
故选:A.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
3、D
【分析】根据计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,可列出方程.
【详解】解:设计划x天生产120个零件,

故选D.
【点睛】
本题考查由实际问题抽象出分式方程,关键设出天数,以件数作为等量关系列方程.
4、C
【分析】根据勾股定理易求BC=1.根据折叠的性质有AB=BE,AD=DE,∠A=∠DEB=90°,
在△CDE中,设AD=DE=x,则CD=8-x,EC=1-6=2.根据勾股定理可求x,在△ADE中,运用勾股定理求BD.
【详解】解:∵∠A=90°,AB=6,AC=8,
∴BC=1.
根据折叠的性质,AB=BE,AD=DE,∠A=∠DEB=90°.
∴EC=1-6=2.
在△CDE中,设AD=DE=x,则CD=8-x,根据勾股定理得
(8-x)2=x2+22.
解得x=4.
∴DE=4.
∴BD==4,故选C.
【点睛】
本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.
5、B
【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】,分母中均不含有字母,因此它们是整式,而不是分式.
其余两个式子的分母中含有字母,因此是分式.
故选:B.
【点睛】
本题考查了分式的定义,特别注意π不是字母,是常数,所以不是分式,是整式.
6、C
【分析】找到所求的无理数在哪两个和它接近的整数之间,即可得出所求的无理数的整数部分.
【详解】解:∵9<15<16,
∴3<<4,
∴m=3,
故选:C.
【点睛】
此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.
7、B
【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.
【详解】解:∵△ABC≌△AEF,
∴AC=AF,EF=BC,∠EAF=∠BAC,故①③正确;
∵∠EAF=∠BAC,
∴∠FAC=∠EAB≠∠FAB,故②错误,④正确;
综上所述,结论正确的是①③④.
故选:B.
【点睛】
本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键.
8、A
【分析】根据平行的性质求得内错角相等,根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,CF的长,即可得出BD的长.
【详解】∵AB∥FC,
∴∠ADE=∠CFE,
∵E是DF的中点,
∴DE=EF,
在△ADE与△CFE中,

∴△ADE≌△CFE(ASA),
∴AD=CF=7cm,
∴BD=AB-AD=12-7=5(cm).
故选:A.
【点睛】
本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定定理是解题的关键.
9、A
【解析】若6是腰长,则三角形的三边分别为6、6、8,
能组成三角形,
周长=6+6+8=20,
若6是底边长,则三角形的三边分别为6、8、8,
能组成三角形,
周长=6+8+8=1,
综上所述,三角形的周长为20或1.
故选A.
10、C
【解析】根据轴对称图形的概念求解.
【详解】第1,2,3个图形为轴对称图形,共3个.
故选:C.
【点睛】
本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
二、填空题(每小题3分,共24分)
11、4
【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;
②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;
③根据∠1=∠B可知AD=BD,故可得出结论;
④先根据直角三角形的性质得出∠2=30°,CD=AD,再由三角形的面积公式即可得出结论.
【详解】①连接NP,MP.在△ANP与△AMP中,∵,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;
②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.
∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;
③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;
④∵在Rt△ACD中,∠2=30°,∴CD=AD,∴BC=BD+CD=AD+AD=AD,S△DAC=AC•CD=AC•AD,∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.
故答案为①②③④.

2022年山东省威海乳山市数学八上期末考试模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数24
  • 收藏数0 收藏
  • 顶次数0
  • 上传人guwutang
  • 文件大小1.26 MB
  • 时间2025-01-28
最近更新