下载此文档

福建省厦门市思明区湖滨中学2022年数学八上期末质量检测模拟试题含解析.doc


文档分类:中学教育 | 页数:约19页 举报非法文档有奖
1/19
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/19 下载此文档
文档列表 文档介绍
该【福建省厦门市思明区湖滨中学2022年数学八上期末质量检测模拟试题含解析 】是由【286919636】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【福建省厦门市思明区湖滨中学2022年数学八上期末质量检测模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图所示.在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于(  )
A.6cm B.5cm C.4cm D.3cm
2.下列二次根式是最简二次根式的是(  )
A. B. C. D.以上都不是
3.下列计算正确的是( )
A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6 D.(ab)2=ab2
4.如图,在平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,连接.下列结论中:①;②是等边角形:③;④;⑤.其中正确的是( )
A.②③⑤ B.①④⑤ C.①②③ D.①②④
5.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为(  )
A.65° B.70° C.75° D.85°
6.不等式组的最小整数解是(  )
A.0 B.-1 C.1 D.2
7.下列运算中正确的是(  )
A.a5+a5=2a10 B.3a3•2a2=6a6
C.a6÷a2=a3 D.(﹣2ab)2=4a2b2
8.下列因式分解正确的是(  )
A. B.
C. D.
9.如图是一个正方形,分成四部分,其面积分别是a2,ab,b2,则原正方形的边长是( )
A.a2+b2 B.a+b C.a﹣b D.a2﹣b2
10.朱锦汶同学学习了全等三角形后,利用全等三角形绘制出了下面系列图案,第(1)个图案由2个全等的三角形组成,第(2)个图案由4个全等的三角形组成,(3)个图案由7个全等的三角形组成,(4)(8)个图案中全等三角形的个数为( )
A.52 B.136 C.256 D.264
二、填空题(每小题3分,共24分)
11.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是_____.
12.如图, 在△ABC中, ∠ACB的平分线交AB于点D, DE⊥AC于点E, F为BC上一点,若DF=AD, △ACD与△CDF的面积分别为10和4, 则△AED的面积为______
13.如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使三角形AMN周长最小时,则∠MAN的度数为_________.
14.如图,在中,是边的中点,垂直于点,则_______________度.
15.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.
16.如图,直线l1:y=﹣x+b与直线l2:y=mx+n相交于点P(﹣2,1),则不等式﹣x+b<mx+n的解集为_____.
17.分解因式:________.
18.如图,在中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=13,则的面积是________.
三、解答题(共66分)
19.(10分)已知:如图 , ∠1=∠2 , ∠3=∠4求证:AC=AB.
20.(6分)在石家庄地铁3号线的建设中,,且甲队比乙队每天多修50米.
(1)求甲队每天修路多少米?
(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?
21.(6分)学校里有两种类型的宿舍30间,大宿舍住8人,小宿舍住5人,该校198名学生住满30间,问大小宿舍各多少间?
22.(8分)如图,是等边三角形,是边上的一点,以为边作等边三角形,使点在直线的同侧,连接.
(1)求证:;
(2)线段与有什么位置关系?请说明理由
23.(8分)(1)﹣(﹣1)2017+﹣|1﹣|
(2)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,求点C坐标.
24.(8分)甲、乙两家园林公司承接了某项园林绿化工程,知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的倍,如果甲公司先单独工作天,再由乙公司单独工作天,这样恰好完成整个工程的.求甲、乙两公司单独完成这项工程各需多少天?
25.(10分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)当点D在AC上时,如下面图1,线段BD、CE有怎样的数量关系和位置关系?请直接写出结论,不需要证明.
(2)将下面图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如下图2,上述关系是否成立?如果成立请说明理由.
26.(10分)如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E.
(1)当∠BDA=128°时,∠EDC=    ,∠AED=    ;
(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分性质求出BE=AE=6cm,求出∠EAB=∠B=15°,即可求出∠EAC,根据含30°角的直角三角形性质求出即可.
【详解】∵在△ABC中,∠ACB=90°,∠B=15°
∴∠BAC=90°-15°=75°
∵DE垂直平分AB,BE=6cm
∴BE=AE=6cm,
∴∠EAB=∠B=15°
∴∠EAC=75°-15°=60°
∵∠C=90°
∴∠AEC=30°
∴AC=AE=×6cm=3cm
故选:D
【点睛】
本题考查了三角形内角和定理,线段垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等,直角三角形中,30°角所对的边等于斜边的一半.
2、C
【解析】试题解析:被开方数含分母,不是最简二次根式;
被开方数中含能开得尽方的因数,不是最简二次根式;
是最简二次根式,
故选C.
3、C
【解析】试题解析:,故A错误;
=a5,故B错误;
=a2b2,故D错误;
故选C.
考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
4、D
【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),得出,④正确;由△AEC与△DCE同底等高,得出,进而得出.⑤不正确.
【详解】解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形,②正确;
∴∠ABE=∠EAD=60°,
∵AB=AE,BC=AD,
∴△ABC≌△EAD(SAS),①正确;
∵△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴,④正确;
又∵△AEC与△DEC同底等高,
∴,
∴,⑤不正确.
若AD与AF相等,即∠AFD=∠ADF=∠DEC,题中未限定这一条件,
∴③不一定正确;
故正确的为:①②④.
故选:D.
【点睛】
本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定.此题比较复杂,注意将每个问题仔细分析.
5、A
【分析】根据全等三角形的性质求出∠D和∠E,再根据三角形内角和定理即可求出∠EAD的度数.
【详解】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,
∴∠B=∠D=40°,∠E=∠C=75°,
∴∠EAD=180°﹣∠D﹣∠E=65°,
故选:A.
【点睛】
本题主要考查了全等三角形的性质及三角形内角和,掌握全等三角形的性质是解题的关键.
6、A
【解析】解:解不等式组 可得,
在这个范围内的最小整数为0,
所以不等式组的最小整数解是0,
故选A
7、D
【解析】根据整式运算即可求出答案.
【详解】+a5=2a5,故A错误;
B. 3a3•2a2=6a5,故B错误;
÷a2=a4,故C错误;
故选D.
【点睛】
此题考查整式的混合运算,解题关键在于掌握运算法则
8、D
【分析】分别把各选项分解因式得到结果,逐一判断即可.
【详解】解:A. ,故本选项不符合题意;
B. ,故本选项不符合题意;
C. ,故本选项不符合题意;
D. ,故本选项符合题意;
故选:D
【点睛】
此题考查了因式分解-十字相乘法,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
9、B
【分析】
四部分的面积和正好是大正方形的面积,根据面积公式可求得边长.
【详解】
解:∵a2+2ab+b2=(a+b)2,
∴边长为a+b.
故选B.
考点:完全平方公式的几何背景.
点评:本题考查了完全平方公式的几何意义,通过图形验证了完全平方公式,难易程度适中.
10、B
【分析】仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.
【详解】观察发现:
第一个图形有1+1=2个三角形;
第二个图形有2+2=4个三角形;
第三个图形有3+22=7个三角形;

第n个图形有n+2n-1个三角形;
当n=8时,n+2n-1=8+27=1.
故选:B.
【点睛】
本题考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
二、填空题(每小题3分,共24分)
11、4n+1.
【分析】观察图形可知,第一个黑色地面砖有六个白色地面砖包围,再每增加一个黑色地面砖就要增加四个白色地面砖.据此规律即可解答.
【详解】解:首先发现:第一个图案中,有白色的是6个,后边是依次多4个.
所以第n个图案中,是6+4(n﹣1)=4n+1.
∴m与n的函数关系式是m=4n+1.
故答案为:4n+1.
【点睛】
本题考查平面图形组合的规律,主要培养学生的观察能力和空间想象能力,解题的关键是发现规律:在第1个图案的基础上,多1个图案,多4个白色地面砖.
12、1
【分析】如图(见解析),过点D作,根据角平分线的性质可得,再利用三角形全等的判定定理得出,从而有,最后根据三角形面积的和差即可得出答案.
【详解】如图,过点D作
平分,

福建省厦门市思明区湖滨中学2022年数学八上期末质量检测模拟试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数19
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小835 KB
  • 时间2025-01-30
最近更新