该【2025年用分析法证明已知(精选12篇) 】是由【hh思密达】上传分享,文档一共【24】页,该文档可以免费在线阅读,需要了解更多关于【2025年用分析法证明已知(精选12篇) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2025年用分析法证明已知(精选12篇)
篇1:用分析法证明 已知
用分析法证明 已知
用分析法证明 已知 要证明(b+c-a)/a+(a+c-b)/b+(a+b-c)/c>3
即是证明(b+c)/a-1+(a+c)/b-1+(a+b)/c-1>3
b/a+a/b+a/c+c/a+b/c+c/b>6
因为a,b,c>0,且不全等,所以b/a+a/b≥2
a/c+c/a≥2
b/c+c/b≥2
上式相加的时候,等号不能取到,因为不全等。故b/a+a/b+a/c+c/a+b/c+c/b>6
命题获证
a-b=tanα+2tanαsinα+sinα-tanα+2tanαsinα-sinα
=4tanαsinα
左边=16tanαsinα
=16tanα(1-cosα)
=16tanα-16tanαcosα
=16tanα-16sinα/cosα*cosα
=16tanα-16sinα
右边=16(tanα-sinα)
所以左边=右边
命题得证
要证|(a+b)/(1+ab)|0
就是要证(a^2-1)(b^2-1)>0
而已知|a|0成立
|(a+b)/(1+ab)|0,b>0
a+b a-a+1/4=(a-1/2)
b-b+1/4=(b-1/2)
所以a-a+b-b+1>0
ab>=0
所以a>0,b>0时
a+b 若都小于0,绝对值一样
把以上倒推回去即可
证明:由a>0,b>0,ln x是增函数,要证:a^a b^b>= a^b b^a,
即证:aln a + bln b>= aln b + bln a
即证:a(ln a - ln b)+b(ln b-ln a)>=0
即证:(a-b)(ln a -ln b)>=0.
由于,ln x是增函数,因此,a-b与lna -lnb符号相同。
则(a-b)(ln a - ln b)>=0成立。
于是:原不等式成立。
篇2:用分析法证明
证明:要证|(x- y)/(1-xy)|0
需证(1-x^2)-y^2(1-x^)>0
需证(1-x^2)(1-y^2)>0
|x|0 1-y^2>0
所以(1-x^2)(1-y^2)>0
所以|(x- y)/(1-xy)|√(a-b)(c-d)
必使ac-2√acbd+bd>(a-b)(c-d)
化简得-2√acbd>-ad-bc
即ad+bc>2√acbd
又因为a>b>0, c>b>0,
由均值不等式得
3
a-b=tanα+2tanαsinα+sinα-tanα+2tanαsinα-sinα
=4tanαsinα
左边=16tanαsinα
=16tanα(1-cosα)
=16tanα-16tanαcosα
=16tanα-16sinα/cosα*cosα
=16tanα-16sinα
右边=16(tanα-sinα)
所以左边=右边
命题得证
4、
】
(根6+根7)平方=13+2*根42
2倍的`跟2=根8
(根8+根5)平方=13+2根40
2*根42-2*根40大于0
故成立。
补充上次的题。(根3+根2)(根5-根3)不等于1就行了, (1/a)+1/(1-a)>=4
1/[a(1-a)]>=4
0 0=0
0=0
0=0成立
其上均可逆
证毕
篇3:分析法证明
分析法证明 a-b=tanα+2tanαsinα+sinα-tanα+2tanαsinα-sinα
=4tanαsinα
左边=16tanαsinα
=16tanα(1-cosα)
=16tanα-16tanαcosα
=16tanα-16sinα/cosα*cosα
=16tanα-16sinα
右边=16(tanα-sinα)
所以左边=右边
命题得证
AC到E,延长DC到F,这样,∠ECF与∠A便成了同位角,只要证明∠ECF=∠A就可以了。因为∠ECF与∠ACD是对顶角,所以,证明∠ECF=∠A,其实就是证明∠ACD=∠A。所以,我们说“同位角相等,两直线平行”与“内错角相等,两直线平行”的证明方法是大同小异的。
其实,这样引辅助线之后,∠BCF与∠B又成了内错角,也可以从这里出发,用“内错角相等,两直线平行”作依据来进行证明。
辅助线当然也不一定要在顶点C处作了,也可以在顶点A处来作,结果又会怎么样呢?即便是在顶点C处作辅助线,我们也可以延长BC到一点G,利用∠DCG与∠B的`同位角关系来进行证明。这些作辅助线的方法和证明的方法,我们这里就不一一的讲述了。有兴趣的朋友,自己下去好好想想,自己练练吧!
2分析法证明ac+bd2更号2+更号5
要证 √6+√7>√8+√5
只需证 6+7+2√42>5+8+2√40
只需证 √42>√40
只需证 42>40
显然成立
所以√6+√7>√8+√5
6
篇4:分析法证明
若a>0 b>0, a+b=1 , 则3^a+3^b0
则证3^1+1-3^a-3^b>0
由于a+b=1
则证3^a*3^b-3^a-3^b+1>0
则证(1-3^a)*(1-3^b)>0
由于a>0,b>0,a+b=1,则0
所以1-3^a>0,1-3^b>0
得证
几何证明分析法
学习数学,关键要学会数学分析方法,特别是几何证明,分析方法显得更加重要。
这里,我们依托人教版七年级《数学》下册第91页复习题7的第6题进行讲解。
“6、如图,∠B=42°,∠A+10°=∠1, ∠ACD=64°,求证:AB//CD”
篇5:分析法证明立体几何
分析法证明立体几何
分析法证明立体几何 延长AC到E,延长DC到F,这样,∠ECF与∠A便成了同位角,只要证明∠ECF=∠A就可以了。因为∠ECF与∠ACD是对顶角,所以,证明∠ECF=∠A,其实就是证明∠ACD=∠A。所以,我们说“同位角相等,两直线平行”与“内错角相等,两直线平行”的证明方法是大同小异的。
其实,这样引辅助线之后,∠BCF与∠B又成了内错角,也可以从这里出发,用“内错角相等,两直线平行”作依据来进行证明。
辅助线当然也不一定要在顶点C处作了,也可以在顶点A处来作,结果又会怎么样呢?即便是在顶点C处作辅助线,我们也可以延长BC到一点G,利用∠DCG与∠B的同位角关系来进行证明。这些作辅助线的方法和证明的方法,我们这里就不一一的'讲述了。有兴趣的朋友,自己下去好好想想,自己练练吧!
2分析法证明ac+bd2更号2+更号5
要证 √6+√7>√8+√5
只需证 6+7+2√42>5+8+2√40
只需证 √42>√40
只需证 42>40
显然成立
所以√6+√7>√8+√5
6
用分析法证明:
若a>0 b>0, a+b=1 , 则3^a+3^b0
则证3^1+1-3^a-3^b>0
由于a+b=1
则证3^a*3^b-3^a-3^b+1>0
则证(1-3^a)*(1-3^b)>0
由于a>0,b>0,a+b=1,则0
所以1-3^a>0,1-3^b>0
得证
几何证明分析法
学习数学,关键要学会数学分析方法,特别是几何证明,分析方法显得更加重要。
这里,我们依托人教版七年级《数学》下册第91页复习题7的第6题进行讲解。
“6、如图,∠B=42°,∠A+10°=∠1, ∠ACD=64°,求证:AB//CD”
用分析法证明:
若a>0 b>0, a+b=1 , 则3^a+3^b0
则证3^1+1-3^a-3^b>0
由于a+b=1
则证3^a*3^b-3^a-3^b+1>0
则证(1-3^a)*(1-3^b)>0
由于a>0,b>0,a+b=1,则0
所以1-3^a>0,1-3^b>0
得证
几何证明分析法
学习数学,关键要学会数学分析方法,特别是几何证明,分析方法显得更加重要。
这里,我们依托人教版七年级《数学》下册第91页复习题7的第6题进行讲解。
“6、如图,∠B=42°,∠A+10°=∠1, ∠ACD=64°,求证:AB//CD”
篇6:分析法证明不等式
分析法证明不等式
分析法证明不等式 已知非零向量a,b,a⊥b,求证|a|+|b|/|a+b|0
显然,由|a+b|>0可知
原不等式等价于不等式:
|a|+|b|≤(√2)|a+b|
该不等式等价于不等式:
(|a|+|b|)≤[(√2)|a+b|].
整理即是:
a+2|ab|+b≤2(a+2ab+b)
】
a+b≤2a+2b
0≤a+b
∵a,b是非零向量,
∴|a|≠0,且|b|≠0.
∴a+b>0.
推上去,可知原不等式成立。
作为数学题型的不等式证明问题和作为数学证明方法的分析法,两者皆为中学数学的教学难点。本文仅就用分析法证明不等式这一问题稍作探讨。
注:“本文中所涉及到的图表、公式注解等形式请以PDF格式阅读原文。”
就是在其两边同时除以根号a+根号b,就可以了。
下面我给你介绍一些解不等式的方法
首先要牢记一些我们常见的不等式。比如均值不等式,柯西不等式,还有琴深不等式(当然这些是翻译的问题)
然后要学会用一些函数的方法,这是解不等式最常见的方法。分析法,综合法,做减法,假设法等等这些事容易的。
2025年用分析法证明已知(精选12篇) 来自淘豆网m.daumloan.com转载请标明出处.