该【概率论例题讲解 】是由【7489238】上传分享,文档一共【39】页,该文档可以免费在线阅读,需要了解更多关于【概率论例题讲解 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。例题讲解
5
01.
1
01.
y=F(x)
01.
3-3 设一个口袋中有依次标有-1,2,2,2,3,3数字的六个相同的球,从口袋中任取一个球,取得的球上标有的数字X是一随机变量,求X的分布函数。
X
-1
2
3
P
1/6
1/2
1/3
v
1
u
(x,y)
u
-
1
(x , y)
v
u
1
(x , y)
v
u
01
02
1
03
(x , y)
04
v
05
设随机变量X和Y独立,其分布列分别为
则下列各式正确的是 。
X=Y (2) P(X=Y)=1/2
P(X=Y)=0 (4) P(X=Y)=1
解:虽然X和Y是相同的分布,但不写成X=Y;
P(X=Y)=P(X=1,Y=1)+P(X=-1,Y=-1)
=P(X=1)P(Y=1)+P(X=-1)P(Y=-1)=+=
选答案(2)
设X,Y满足D(X+Y)=D(X-Y), 则X, Y必有 .
1
解:因为D(X+Y)=D(X)+D(Y)+2cov(X,Y)
D(X-Y)=D(X)+D(Y)-2cov(X,Y)
2
由于D(X+Y)=D(X-Y)
3
得 2cov(X,Y)=-2cov(X,Y)
4
cov(X,Y)=0
X,Y不相关。
5
十、对随机变量X和Y,已知E(X)=-2, E(Y)=2,
D(X)=1, D(Y)=4, X与Y的相关系数r = - 由契比
雪夫不等式所能确定的最小正数c为何值(其中c满
足不等式 P{|X+Y|≥6}≤c )
解:E(X+Y)=E(X)+E(Y)=-2+2=0
D(X+Y)=D(X)+D(Y)+2cov(X,Y)
=D(X)+D(Y)+2r
=1+4+2(-)12=3
P{|(X+Y)-E(X+Y)|≥6}≤D(X+Y)/62
P{|X+Y|≥6}≤3/62=1/12 c=1/12
设n~B(n, p). (0<p<1, n=1,2,…)则对任意实数x,有
解:
01
02
概率论例题讲解 来自淘豆网m.daumloan.com转载请标明出处.