下载此文档

2021年浙江省杭州市中考数学试卷-解析版.docx


文档分类:中学教育 | 页数:约21页 举报非法文档有奖
1/21
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/21 下载此文档
文档列表 文档介绍
该【2021年浙江省杭州市中考数学试卷-解析版 】是由【1875892****】上传分享,文档一共【21】页,该文档可以免费在线阅读,需要了解更多关于【2021年浙江省杭州市中考数学试卷-解析版 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2021年浙江省杭州市中考数学试卷
一.选择题(共10小题)
1.×=(  )
A. B. C. D.3
2.(1+y)(1﹣y)=(  )
A.1+y2 B.﹣1﹣y2 C.1﹣y2 D.﹣1+y2
3.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费(  )
A.17元 B.19元 C.21元 D.23元
4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则(  )
A.c=bsinB B.b=csinB C.a=btanB D.b=ctanB
5.若a>b,则(  )
A.a﹣1≥b B.b+1≥a C.a+1>b﹣1 D.a﹣1>b+1
6.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是(  )
A. B.
C. D.
7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个
最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则(  )
A.y>z>x B.x>z>y C.y>x>z D.z>y>x
8.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,(  )
A.若h=4,则a<0 B.若h=5,则a>0
C.若h=6,则a<0 D.若h=7,则a>0
9.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则(  )
A.3α+β=180° B.2α+β=180° C.3α﹣β=90° D.2α﹣β=90°
10.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,(  )
A.若M1=2,M2=2,则M3=0 B.若M1=1,M2=0,则M3=0
C.若M1=0,M2=2,则M3=0 D.若M1=0,M2=0,则M3=0
二.填空题(共6小题)
11.若分式的值等于1,则x=   .
12.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=   .
13.设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=   .
14.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则
tan∠BOC=   .
16.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=   ,BE=   .
三.解答题(共7小题)
17.以下是圆圆解方程=1的解答过程.
解:去分母,得3(x+1)﹣2(x﹣3)=1.
去括号,得3x+1﹣2x+3=1.
移项,合并同类项,得x=﹣3.
圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.
18.某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.
(1)求4月份生产的该产品抽样检测的合格率;
(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数最多?为什么?
19.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.
(1)求证:△BDE∽△EFC.
(2)设,
①若BC=12,求线段BE的长;
②若△EFC的面积是20,求△ABC的面积.
20.设函数y1=,y2=﹣(k>0).
(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.
(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?
21.如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).
(1)若AB=2,λ=1,求线段CF的长.
(2)连接EG,若EG⊥AF,
①求证:点G为CD边的中点.
②求λ的值.
22.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).
(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.
(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).
(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.
23.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.
(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.
(2)连接BF,DF,设OB与EF交于点P,
①求证:PE=PF.
②若DF=EF,求∠BAC的度数.
2020年浙江省杭州市中考数学试卷
参考答案与试题解析
一.选择题(共10小题)
1.×=(  )
A. B. C. D.3
【分析】根据二次根式的乘法运算法则进行运算即可.
【解答】解:×=,
故选:B.
2.(1+y)(1﹣y)=(  )
A.1+y2 B.﹣1﹣y2 C.1﹣y2 D.﹣1+y2
【分析】直接利用平方差公式计算得出答案.
【解答】解:(1+y)(1﹣y)=1﹣y2.
故选:C.
3.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费(  )
A.17元 B.19元 C.21元 D.23元
【分析】根据题意列出算式计算,即可得到结果.
【解答】解:根据题意得:13+(8﹣5)×2=13+6=19(元).
则需要付费19元.
故选:B.
4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则(  )
A.c=bsinB B.b=csinB C.a=btanB D.b=ctanB
【分析】根据三角函数的定义进行判断,就可以解决问题.
【解答】解:∵Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,
∴sinB=,即b=csinB,故A选项不成立,B选项成立;
tanB=,即b=atanB,故C选项不成立,D选项不成立.
故选:B.
5.若a>b,则(  )
A.a﹣1≥b B.b+1≥a C.a+1>b﹣1 D.a﹣1>b+1
【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.
【解答】解:A、a=,b=,a>b,但是a﹣1<b,不符合题意;
B、a=3,b=1,a>b,但是b+1<a,不符合题意;
C、∵a>b,∴a+1>b+1,∵b+1>b﹣1,∴a+1>b﹣1,符合题意;
D、a=,b=,a>b,但是a﹣1<b+1,不符合题意.
故选:C.
6.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是(  )
A. B.
C. D.
【分析】求得解析式即可判断.
【解答】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),
∴2=a+a,解得a=1,
∴y=x+1,
∴直线交y轴的正半轴,且过点(1,2),
故选:A.
7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为
x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则(  )
A.y>z>x B.x>z>y C.y>x>z D.z>y>x
【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.
【解答】解:由题意可得,
y>z>x,
故选:A.
8.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,(  )
A.若h=4,则a<0 B.若h=5,则a>0
C.若h=6,则a<0 D.若h=7,则a>0
【分析】当x=1时,y=1;当x=8时,y=8;代入函数式整理得a(9﹣2h)=1,将h的值分别代入即可得出结果.
【解答】解:当x=1时,y=1;当x=8时,y=8;代入函数式得:,
∴a(8﹣h)2﹣a(1﹣h)2=7,
整理得:a(9﹣2h)=1,
若h=4,则a=1,故A错误;
若h=5,则a=﹣1,故B错误;
若h=6,则a=﹣,故C正确;
若h=7,则a=﹣,故D错误;
故选:C.
9.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则(  )
A.3α+β=180° B.2α+β=180° C.3α﹣β=90° D.2α﹣β=90°
【分析】根据直角三角形两锐角互余性质,用α表示∠CBD,进而由圆心角与圆周角关系,用α表示∠COD,最后由角的和差关系得结果.
【解答】解:∵OA⊥BC,
∴∠AOB=∠AOC=90°,
∴∠DBC=90°﹣∠BEO=90°﹣∠AED=90°﹣α,
∴∠COD=2∠DBC=180°﹣2α,
∵∠AOD+∠COD=90°,
∴β+180°﹣2α=90°,
∴2α﹣β=90°,
故选:D.
10.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,(  )
A.若M1=2,M2=2,则M3=0 B.若M1=1,M2=0,则M3=0
C.若M1=0,M2=2,则M3=0 D.若M1=0,M2=0,则M3=0
【分析】选项B正确,利用判别式的性质证明即可.
【解答】解:选项B正确.
理由:∵M1=1,M2=0,
∴a2﹣4=0,b2﹣8<0,
∵a,b,c是正实数,
∴a=2,
∵b2=ac,
∴c=b2,
对于y3=x2+cx+4,
则有△=c2﹣16=b2﹣16=(b2﹣64)<0,
∴M3=0,
∴选项B正确,
故选:B.
二.填空题(共6小题)
11.若分式的值等于1,则x= 0 .
【分析】根据分式的值,可得分式方程,根据解分式方程,可得答案.
【解答】解:由分式的值等于1,得
=1,
解得x=0,
经检验x=0是分式方程的解.
故答案为:0.
12.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A= 20° .
【分析】直接利用平行线的性质得出∠ABF=50°,进而利用三角形外角的性质得出答案.
【解答】解:∵AB∥CD,
∴∠ABF+∠EFC=180°,
∵∠EFC=130°,
∴∠ABF=50°,
∵∠A+∠E=∠ABF=50°,∠E=30°,
∴∠A=20°.
故答案为:20°.
13.设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P= ﹣ .
【分析】根据完全平方公式得到(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减即可求解.

2021年浙江省杭州市中考数学试卷-解析版 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数21
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1875892****
  • 文件大小187 KB
  • 时间2025-02-12