下载此文档

专题12二次函数压轴解答题(共44道)-2021年中考数学真题分项汇编(解析版)【全国通用】.docx


文档分类:中学教育 | 页数:约92页 举报非法文档有奖
1/92
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/92 下载此文档
文档列表 文档介绍
该【专题12二次函数压轴解答题(共44道)-2021年中考数学真题分项汇编(解析版)【全国通用】 】是由【286919636】上传分享,文档一共【92】页,该文档可以免费在线阅读,需要了解更多关于【专题12二次函数压轴解答题(共44道)-2021年中考数学真题分项汇编(解析版)【全国通用】 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2021年中考数学真题分项汇编(全国通用)
专题12二次函数压轴解答题(共44道)
一.解答题(共44小题)
1.(2020•衡阳)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).
(1)求这个二次函数的表达式;
(2)求当﹣2≤x≤1时,y的最大值与最小值的差;
(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.
【分析】(1)由二次函数的图象经过(﹣1,0)和(2,0)两点,组成方程组再解即可求得二次函数的表达式;
(2)求得抛物线的对称轴,根据图象即可得出当x=﹣2,函数有最大值4;当x=12是函数有最小值-94,进而求得它们的差;
(3)由题意得x2﹣x﹣2=(2﹣m)x+2﹣m,整理得x2+(m﹣3)x+m﹣4=0,因为a<2<b,a≠b,△=(m﹣3)2﹣4×(m﹣4)=(m﹣5)2>0,把x=3代入(2﹣m)x+2﹣m>x2﹣x﹣2,解得m<-12.
【解析】(1)由二次函数y=x2+px+q的图象经过(﹣1,0)和(2,0)两点,
∴1-p+q=04+2p+q=0,解得p=-1q=-2,
∴此二次函数的表达式y=x2﹣x﹣2;
(2)∵抛物线开口向上,对称轴为直线x=-1+22=12,
∴在﹣2≤x≤1范围内,当x=﹣2,函数有最大值为:y=4+2﹣2=4;当x=12是函数有最小值:y=14-12-2=-94,
∴的最大值与最小值的差为:4﹣(-94)=254;
(3)∵y=(2﹣m)x+2﹣m与二次函数y=x2﹣x﹣2图象交点的横坐标为a和b,
∴x2﹣x﹣2=(2﹣m)x+2﹣m,整理得
x2+(m﹣3)x+m﹣4=0
∵a<3<b
∴a≠b
∴△=(m﹣3)2﹣4×(m﹣4)=(m﹣5)2>0
∴m≠5
∵a<3<b
当x=3时,(2﹣m)x+2﹣m>x2﹣x﹣2,
把x=3代入(2﹣m)x+2﹣m>x2﹣x﹣2,解得m<-12
∴m的取值范围为m<-12.
2.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.
(1)求抛物线的解析式及点G的坐标;
(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.
【分析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;
(2)先求出点M,点N坐标,即可求解.
【解析】(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,
∴点B(0,c),
∵OA=OB=c,
∴点A(c,0),
∴0=﹣c2+2c+c,
∴c=3或0(舍去),
∴抛物线解析式为:y=﹣x2+2x+3,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点G为(1,4);
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴对称轴为直线x=1,
∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,
∴点M的横坐标为﹣2或4,点N的横坐标为6,
∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),
∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,
∴﹣21≤yQ≤4.
3.(2020•凉山州)如图,二次函数y=ax2+bx+x的图象过O(0,0)、A(1,0)、B(32,32)三点.
(1)求二次函数的解析式;
(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;
(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.
【分析】(1)将点O、A、B的坐标代入抛物线表达式,即可求解;
(2)由点B的坐标知,直线BO的倾斜角为30°,则OB中垂线(CD)与x负半轴的夹角为60°,故设
CD的表达式为:y=-3x+b,而OB中点的坐标为(34,34),将该点坐标代入CD表达式,即可求解;
(3)过点P作y轴额平行线交CD于点H,PH=-3x+3-(233x2-233x)=-233x2-33x+3,即可求解.
【解析】(1)将点O、A、B的坐标代入抛物线表达式得c=0a+b+c=032=94a+32b+c,解得a=-233b=-233c=0,
故抛物线的表达式为:y=233x2-233x;
(2)由点B的坐标知,直线BO的倾斜角为30°,则OB中垂线(CD)与x负半轴的夹角为60°,
故设CD的表达式为:y=-3x+b,而OB中点的坐标为(34,34),
将该点坐标代入CD表达式并解得:b=3,
故直线CD的表达式为:y=-3x+3;
(3)设点P(x,233x2-233x),则点Q(x,-3x+3),
则PQ=-3x+3-(233x2-233x)=-233x2-33x+3,
∵-233<0,故PQ有最大值,此时点P的坐标为(-14,27316).
4.(2020•黑龙江)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.
(1)求a的值;
(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.
【分析】(1)由y=﹣x2+(a+1)x﹣a,令y=0,即﹣x2+(a+1)x﹣a=0,可求出A、B坐标结合三角形的面积,解出a=﹣3;
(2)根据题意P的纵坐标为±3,分别代入解析式即可求得横坐标,从而求得P的坐标.
【解析】(1)∵y=﹣x2+(a+1)x﹣a,
令x=0,则y=﹣a,
∴C(0,﹣a),
令y=0,即﹣x2+(a+1)x﹣a=0
解得x1=a,x2=1
由图象知:a<0
∴A(a,0),B(1,0)
∵S△ABC=6
∴12(1﹣a)(﹣a)=6
解得:a=﹣3,(a=4舍去);
(2)∵a=﹣3,
∴C(0,3),
∵S△ABP=S△ABC.
∴P点的纵坐标为±3,
把y=3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=3,解得x=0或x=﹣2,
把y=﹣3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=﹣3,解得x=﹣1+7或x=﹣1-7,
∴P点的坐标为(﹣2,3)或(﹣1+7,﹣3)或(﹣1-7,﹣3).
5.(2020•杭州)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).
(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.
(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(1r,0).
(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.
【分析】(1)利用待定系数法解决问题即可.
(2)函数y1的图象经过点(r,0),其中r≠0,可得r2+br+a=0,推出1+br+ar2=0,即a(1r)2+b•1r+1=0,推出1r是方程ax2+bx+1的根,可得结论.
(3)由题意a>0,∴m=4a-b24,n=4a-b24a,根据m+n=0,构建方程可得结论.
【解析】(1)由题意,得到-b2=3,解得b=﹣6,
∵函数y1的图象经过(a,﹣6),
∴a2﹣6a+a=﹣6,
解得a=2或3,
∴函数y1=x2﹣6x+2或y1=x2﹣6x+3.
(2)∵函数y1的图象经过点(r,0),其中r≠0,
∴r2+br+a=0,
∴1+br+ar2=0,
即a(1r)2+b•1r+1=0,
∴1r是方程ax2+bx+1的根,
即函数y2的图象经过点(1r,0).
(3)由题意a>0,∴m=4a-b24,n=4a-b24a,
∵m+n=0,
∴4a-b24+4a-b24a=0,
∴(4a﹣b2)(a+1)=0,
∵a+1>0,
∴4a﹣b2=0,
∴m=n=0.
6.(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.
(1)判断点B是否在直线y=x+m上,并说明理由;
(2)求a,b的值;
(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;
(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;
(3)设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(p2,p24+q),根据题意得出p24+q=p2+1,由抛物线y=﹣x+px+q与y轴交点的纵坐标为q,即可得出q=p24-p2-1=-14(p﹣1)2+54,从而得出q的最大值.
【解析】(1)点B是在直线y=x+m上,理由如下:
∵直线y=x+m经过点A(1,2),
∴2=1+m,解得m=1,
∴直线为y=x+1,
把x=2代入y=x+1得y=3,
∴点B(2,3)在直线y=x+m上;
(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,
∴抛物线只能经过A、C两点,
把A(1,2),C(2,1)代入y=ax2+bx+1得a+b+1=24a+2b+1=1,
解得a=﹣1,b=2;
(3)由(2)知,抛物线为y=﹣x2+2x+1,
设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(p2,p24+q),
∵顶点仍在直线y=x+1上,
∴p24+q=p2+1,
∴q=p24-p2-1,
∵抛物线y=﹣x+px+q与y轴的交点的纵坐标为q,
∴q=p24-p2-1=-14(p﹣1)2+54,
∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为54.
7.(2020•陕西)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
(1)求该抛物线的表达式;
(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.
【分析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式,即可求解;
(2)由题意得:PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,分点P在抛物线对称轴右侧、点P在抛物线对称轴的左侧两种情况,分别求解即可.
【解析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得12=9+3b+c-3=4-2b+c,解得b=2c=-3,
故抛物线的表达式为:y=x2+2x﹣3;
(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,
故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),
故OA=OC=3,
∵∠PDE=∠AOC=90°,
∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,
设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,
故n=22+2×2﹣5=5,故点P(2,5),
故点E(﹣1,2)或(﹣1,8);
当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,
综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).
8.(2020•武威)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若PC∥AB,求点P的坐标;
(3)连接AC,求△PAC面积的最大值及此时点P的坐标.
【分析】(1)抛物线y=ax2+bx﹣2,则c=﹣2,故OC=2,而OA=2OC=8OB,则OA=﹣4,OB=12,确定点A、B、C的坐标;即可求解;
(2)抛物线的对称轴为x=-74,当PC∥AB时,点P、C的纵坐标相同,即可求解;
(3)△PAC的面积S=S△PHA+S△PHC=12PH×OA,即可求解.
【解析】(1)抛物线y=ax2+bx﹣2,则c=﹣2,故OC=2,
而OA=2OC=8OB,则OA=﹣4,OB=12,
故点A、B、C的坐标分别为(﹣4,0)、(12,0)、(0,﹣2);
则y=a(x+4)(x-12)=a(x2+72x﹣2)=ax2+bx﹣2,故a=1,
故抛物线的表达式为:y=x2+72x﹣2;
(2)抛物线的对称轴为x=-74,
当PC∥AB时,点P、C的纵坐标相同,根据函数的对称性得点P(-74,﹣2);
(3)过点P作PH∥y轴交AC于点H,
由点A、C的坐标得,直线AC的表达式为:y=-12x﹣2,
则△PAC的面积S=S△PHA+S△PHC=12PH×OA=12×4×(-12x﹣2﹣x2-72x+2)=﹣2(x+2)2+8,
∵﹣2<0,
∴S有最大值,当x=﹣2时,S的最大值为8,此时点P(﹣2,﹣5).
9.(2020•齐齐哈尔)综合与探究
在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.
(1)求抛物线的解析式;
(2)直线AB的函数解析式为 y=x+4 ,点M的坐标为 (﹣2,﹣2) ,cos∠ABO= 22 ;
连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为 (﹣2,2)或(0,4) ;
(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;
(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【分析】(1)将点A、C的坐标代入抛物线表达式即可求解;
(2)点A(﹣4,0),OB=OA=4,故点B(0,4),即可求出AB的表达式;OP将△AOC的面积分成1:2的两部分,则AP=13AC或23AC,即可求解;
(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,即可求解;
(4)分AC是边、AC是对角线两种情况,分别求解即可.
【解析】(1)将点A、C的坐标代入抛物线表达式得:12×16-4b+c=012×4+2b+c=6,解得b=2c=0,
故直线AB的表达式为:y=12x2+2x;

专题12二次函数压轴解答题(共44道)-2021年中考数学真题分项汇编(解析版)【全国通用】 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数92
  • 收藏数0 收藏
  • 顶次数0
  • 上传人286919636
  • 文件大小799 KB
  • 时间2025-02-13