下载此文档

2025年考研高等数学之极限复习方法(精选7篇).docx


文档分类:研究生考试 | 页数:约17页 举报非法文档有奖
1/17
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/17 下载此文档
文档列表 文档介绍
该【2025年考研高等数学之极限复习方法(精选7篇) 】是由【baba】上传分享,文档一共【17】页,该文档可以免费在线阅读,需要了解更多关于【2025年考研高等数学之极限复习方法(精选7篇) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2025年考研高等数学之极限复习方法(精选7篇)
篇1:考研高等数学之极限复习方法
考研高等数学之极限复习方法
大家好,今天我们来说一下极限的复习方法。我们都知道高等数学在整个考研数学中占到了56%的比例。所以复习好高等数学至关重要。而极限是高等数学的基础,所以极限学习的成败也就在一定程度上决定了高等数学的成败。
我们先看一下高等数学的整体框架:
从中我们可以看出:高等数学用极限定义的连续,可导,级数;并且导数应用中用洛必达法则求极限。而不定积分是导数的逆运算,定积分的定义也用到了极限思想。所以学好了极限就相当于为整个高等数学的学习奠定了基础。在这里,向蠢鲜将给大家分享一下极限的复习方法。

这一点对学习任何知识都适用。大家只有掌握了极限的知识体系,才能清楚极限包含的内容以及可能的重难点。极限这章包括了三个部分:首先是极限的概念以及无穷小和无穷大的介绍;然后是极限的基本性质;最后是极限的计算方法。大家可以把这个知识体系与考纲做个对照,就会发现极限的计算是重点。在清楚了重点后,复习极限时就可以做到详略得当,有的放矢。

在牢记知识体系之后,大家要做的自然是理解知识点。首先是极限的概念以及无穷小和无穷大的介绍。针对极限的概念,大家没必要像定积分定义那样记的那么准。历年考研几乎没考过用定义来求极限。所以,大家要做的是理解这个概念,并能用自己的话来表述。特别是教材或者参考书上针对概念的注解是大家需要关注的。至于无穷小和无穷大,关键也是要理解内涵,并且与极限联系。然后是极限的基本性质。大家也不需要强记性质。大家需要做的还是理解。即要多问问自己这条性质怎么来的。比如说函数极限的局部有界性和数列极限的有界性。那么大家就要想想为什么函数极限是局部有界呢?再比如函数极限的局部保号性及推论是怎么来的?我想如果大家都能给出证明的话,那这些性质也就自然记住了。最后是极限的计算。这个是重点。每年的考研必考至少一道关于极限的计算大题。但是在学习极限时,很多同学都是在这里出现了瓶颈。究其原因,我想主要是两点:一,方法理解不透彻。具体就是被极限式子的形式多,因而求极限的方法多,很多同学容易混淆,张冠李戴,没理解方法的使用条件和内涵。比如求极限的常用方法:等价无穷小替代。很多同学一看到题目有已知的等价无穷小就盲目的利用等价替换。殊不知等价无穷小替代是有条件的,即一般情况下整个式子的`乘除因子才能替代。再比如洛必达法则求极限。很多同学一看到0比0或者无穷比无穷就毫不犹豫的用这个法则。但是,在使用洛必达法则前,要满足三个条件。所以,希望大家对极限的求解方法要理解透彻,要注意这些方法的使用条件,这样才不会错。二。心态。因为求极限的方法比较多,而且题目更多。很多同学为了更好的巩固知识点,做了大量的题。这种想法是好的,但是同时会出现大量不会的题。所以一些同学就开始灰心丧气,心态失衡,继续题海战术。这样的恶性循环造成了否定自己,最终会的也不会了。针对这种情况,我建议大家要学会对求极限的题目进行归类。每一类做一些题目就够了。它的目的是巩固知识点不是为了做难题。大家只有掌握了方法和类型,以后做题就能对号入座,也就不用题海战术了。

在大家掌握了知识体系以及知识点后就需要适量的题目来巩固。在这里,我坚决反对题海战术。因为大家的时间有限并且题海战术在没理解知识点之前是没用的。现在社会做事情都讲究高效,我希望大家能够事半功倍。那么针对极限这章,我前面说了计算是重点。所以我希望大家对极限计算方法进行总结。大家可以按照以下思路来。首先,能代入,就用四则运算。然后,如果不能代入,就可以先看看能不能用等价无穷小化简。化简后,再看被极限式子类型(7种类型)。最后,根据类型以及方法的适用条件来选择合适方法。有了这个思路,大家就可以做一些题,然后自己总结归纳。
总之,希望大家经过这三个步骤能够学习好极限,为以后的高等数学的复习打好基础。祝大家考研顺利,马到成功!
篇2:考研数学高等数学复习方法
考研数学高等数学复习方法
首先要明确考试重点,充分把握重点。
比如高数第一章函数极限和连续的重点就是不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。
对于导数和微分,其实重点不是给一个函数求导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的`求法都是重要的题型,总而言之看上去不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。
还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了多元函数积分学,这里面每年都要考一个题目。
另外曲线和曲面积分,这也是必考的重点内容。
一阶微分方程,还有无穷级数,无穷级数的求和,主要是间接的展开法。重点主要就是这些了。要充分把握住这些重点,同学们在以后的复习的强化阶段就应该多研究历年真题,这样做也能更好地了解命题思路和难易度。
策略之一:缺步解答
对一个疑难问题,确实啃不动时,一个明智的解题策略是,将它划分为一个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的语言文字转化成数学语言和相应数学公式,把条件和目标译成数学表达式等,都能得分。而且可望从上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
策略之二:跳步解答
解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底。
如果题目有两问,第一问做不上,可以把第一问当做已知条件,先完成第二问,这叫跳步解答。如果在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
黄金战术原则:六先六后,因人制宜
战术之一:先易后难
就是先做小题和简单题,后做综合题和大题。根据自己的实际,果断跳过啃不动的题目,从易到难解题。但要注意认真对待每一道题,力求有效,不能走马观花,有难就退。
战术之二:先熟后生
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。对后者,不要惊慌失措,应想到试题偏难对所有考生都难,确保情绪稳定。
对全卷整体把握之后,就可实施先熟后生的战略战术。即先做那些内容掌握到家、题型结构比较熟悉、解题思路比较清晰的题目,让自己产生“旗开得胜”的效果,从而有一个良好的开端,以振奋精神、鼓舞信心,很快进入最佳思维状态,即发挥心理学中所谓的“门槛效应”。之后做一题得一题,不断产生激励,稳拿中低,见机攀高,达到超常发挥、拿下中高档题目的目的。
战术之三:先同后异
就是说,先做同科同类型的题目,思维比较集中,知识和方法的沟通比较容易。考研题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”转移过急、过频的跳跃,从而减轻大脑负担,保持有效精力。
战术之四:先小后大
小题一般信息量少、运算量小,易于把握,不要轻易放过,应争取在做大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理空间。
战术之五:先点后面
近年的考研数学解答题呈现为多问渐难式的“梯度题”,解答时不必一气做到底,应走一步解决一步,而前面的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。
战术之六:先高后低
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;如估计两题都不容易,则先做高分题“分段得分”,以增加在时间不足的前提下的得分能力。
与此同时,要求大家审题要慢,解答要快;关键步骤力求全面准确,宁慢勿快。尽量做到内紧外松,既要保持注意力高度集中,又要思想上放得开,沉着应战,确保成功!
对于抽象型行列式来说,其计算方法就有可能是与后面的知识相结合来处理的。关于抽象型行列式的计算一方面可以利用行列式的性质来计算,这里主要是运用单行(列)可拆性来计算的,这种大多是把行列式用向量来表示的,然后利用单行或者列可拆性,把它拆开成多个行列式,然后逐个计算,这时一部分行列式可能就会出现两行或者列元素相同或者成比例了,这样简化后便可求出题目中要求的行列式。
另一方面利用矩阵的性质及运算来计算,这类题,主要是用两个矩阵相乘的行列式等于两个矩阵分别取行列式相乘,这里当然要求必须是方阵才行。这类题目的解题思路就是利用已知条件中的式子化和差为乘积的形式,进而两边再取行列式,便可得到所求行列式。之前很多年考研中都出现过此类填空或者选择题。因此,此类题型同学们务必要掌握住其解题思路和方法,多做练习加以巩固。
(1)利用单位矩阵的来求行列式,这类题目难度比前面题型要大,对矩阵的相关性质和结论要求比较高。早在1995年数一的考研试卷中出现过一题6分的解答题,这题就是要利用A乘以A的转置等于单位矩阵E这个条件来代换的,把要求的式子中的单位矩阵换成这个已知条件来处理的。
(2)利用矩阵特征值来求行列式,这类题在考研中出现过很多次,利用矩阵的特征值与其行列式的关系来求行列式,即行列式等于矩阵特征值之积,这种方法要求同学们一定要掌握住,课下要多做些练习加以巩固。
篇3:考研高等数学基础复习方法
考研数学分为高等数学,概率论与数理统计和线性代数三个科目,一般而言线性代数都会认为比较简单,概率论的比例次于高等数学,重头戏就是高等数学。高等数学是一门比较难的课程,想要得高分并容易。极限的运算、无穷小量、一元微积分学、多元微积分学、无穷级数等章节都有比较大的难度。
找到适合自己的学习方法是最重要的,这样才能最大限度的提高复习效率。很多人对“怎样才能学好这门课程?”感到困惑。根据多年教学经验总结,为大家讲解一下高数的学习方法,希望能对考研的同学有所帮助。
篇4:考研高等数学基础复习方法
第一、理解概念掌握定理
数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。所有的问题都在理解的基础上才能做好。
定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
第二、教材习题要做熟
要特别提醒学习者的是,课本上的`例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。
第三、从宏观上理清脉络
要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,但不够系统)
数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。
高等数学复习时间合理安排:
其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。
第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。

2025年考研高等数学之极限复习方法(精选7篇) 来自淘豆网m.daumloan.com转载请标明出处.