刘海坤博士,副教授
**********
******@hust.
华中科技大学计算机科学与技术学院
2017年 4月
第七章:Spark框架和安装部署
Hadoop课外实践
课外实践目标一:采用MapReduce开源系统Hadoop实现SSSP算法或者PageRank算法
安装部署:http://hadoop./
数据集:
Spark运行架构
1 基本概念
2 架构设计
3 Spark运行基本流程
4 Spark运行原理
1 基本概念
RDD:是Resillient Distributed Dataset(弹性分布式数据集)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型
DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系
Executor:是运行在工作节点(WorkerNode)的一个进程,负责运行Task
Application:用户编写的Spark应用程序
Task:运行在Executor上的工作单元
Job:一个Job包含多个RDD及作用于相应RDD上的各种操作
Stage:是Job的基本调度单位,一个Job会分为多组Task,每组Task被称为Stage,或者也被称为TaskSet,代表了一组关联的、相互之间没有Shuffle依赖关系的任务组成的任务集
2 架构设计
Spark运行架构
Spark运行架构包括集群资源管理器(Cluster Manager)、运行作业任务的工作节点(Worker Node)、每个应用的任务控制节点(Driver)和每个工作节点上负责具体任务的执行进程(Executor)
资源管理器可以自带或Mesos或YARN
与Hadoop MapReduce计算框架相比,Spark所采用的Executor有两个优点:
一是利用多线程来执行具体的任务,减少任务的启动开销
二是Executor中有一个BlockManager存储模块,会将内存和磁盘共同作为存储设备,有效减少IO开销
2 架构设计
Spark中各种概念之间的相互关系
一个Application由一个Driver和若干个Job构成,一个Job由多个Stage构成,一个Stage由多个没有Shuffle关系的Task组成
当执行一个Application时,Driver会向集群管理器申请资源,启动Executor,并向Executor发送应用程序代码和文件,然后在Executor上执行Task,运行结束后,执行结果会返回给Driver,或者写到HDFS或者其他数据库中
3 Spark运行基本流程
Spark运行基本流程图
(1)首先为应用构建起基本的运行环境,即由Driver创建一个SparkContext,进行资源的申请、任务的分配和监控
(2)资源管理器为Executor分配资源,并启动Executor进程
(3)SparkContext根据RDD的依赖关系构建DAG图,DAG图提交给DAGScheduler解析成Stage,然后把一个个TaskSet提交给底层调度器TaskScheduler处理;Executor向SparkContext申请Task,Task Scheduler将Task发放给Executor运行,并提供应用程序代码
(4)Task在Executor上运行,把执行结果反馈给TaskScheduler,然后反馈给DAGScheduler,运行完毕后写入数据并释放所有资源
SparkContext对象代表了和一个集群的连接
3 Spark运行基本流程
总体而言,Spark运行架构具有以下特点:
(1)每个Application都有自己专属的Executor进程,并且该进程在Application运行期间一直驻留。Executor进程以多线程的方式运行Task
(2)Spark运行过程与资源管理器无关,只要能够获取Executor进程并保持通信即可
(3)Task采用了数据本地性和推测执行等优化机制
4 RDD运行原理
4 RDD运行原理
许多迭代式算法(比如机器学习、图算法等)和交互式数据挖掘工具,共同之处是,不同计算阶段之间会重用中间结果
目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销
RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作
移动平台开发 来自淘豆网m.daumloan.com转载请标明出处.