下载此文档

使用Excel规划求解解线性规划问题.doc


文档分类:办公文档 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
使用Excel规划求解解线性规划问题.doc引言
最近,开始学习运筹学,期望通过学习后能够解决许多困扰自已的难题。
刚开始时,选了很多教材,最后以Hamdy A. Taha著的《Operations Research:An Introduction》开始学习。(该书已由人民邮电出版社出版,书名《运筹学导论-初级篇(第8版)》,不知为什么,下载链接中只有该书配套的部分习题解答,而书中所说的光盘文件找不到下载的地方,因为中译本没有配光盘,因此也就错过了许多示例文件。不知道哪位有配套光盘文件,可否共享???)
线性规划求解的基本知识
线性规划模型由3个基本部分组成:
决策变量(variable)
目标函数(objective)
约束条件(constraint)
示例:营养配方问题
(问题)某农场每天至少使用800磅特殊饲料。这种特殊饲料由玉米和大豆粉配制而成,含有以下成份:
特殊饲料的营养要求是至少30%的蛋白质和至多5%的纤维。该农场希望确定每天最小成本的饲料配制。
(解答过程)
因为饲料由玉米和大豆粉配制而成,所以模型的决策变量定义为:
x1=每天混合饲料中玉米的重量(磅)
x2=每天混合饲料中大豆粉的重量(磅)
目标函数是使配制这种饲料的每天总成本最小,因此表示为:
min z=×1+×2
模型的约束条件是饲料的日需求量和对营养成份的需求量,具体表示为:
x1+x2≥800
×1+×2≥(x1+x2)
×1+×2≤(x1+x2)
将上述不等式化简后,完整的模型为:
min z=×1+×2
. x1+x2≥800
×1-×2≤0
×1-×2≥0
x1,x2≥0
可以使用图解法确定最优解。下面,我们介绍使用Excel的规划求解加载项求解该模型。
使用Excel规划求解解线性规划问题
步骤1 安装Excel规划求解加载项
单击“Office按钮——Excel选项——加载项——(Excel加载项)转到”,出现“加载宏”对话框,如下图所示。选择“规划求解加载项”,单击“确定”。
此时,在“数据”选项卡中出现带有“规划求解”按钮的“分析”组,如下图所示。
步骤2 设计电子表格
使用Excel求解线性规划问题时,电子表格是输入和输出的载体,因此设计良好的电子表格,更加易于阅读。本例的电子表格设计如下图所示:
其中,输入数据的单元格使用了阴影格式,即B5:C8和F6:F8;变量和目标函数单元格为B12:D12,加上了粗线边框;D5:D8中输入了约束公式,公式如上图中的右上角所示,其相应的代数表达式见上文。
技巧:也可以在单元格D5中输入公式:
=SUMPRODUCT(

使用Excel规划求解解线性规划问题 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人mh900965
  • 文件大小170 KB
  • 时间2018-04-28
最近更新