名称
方程
适用范围
斜截式
点斜式
两点式
截距式
一般式
关系
l2:y=k2x+b2
l2:A2x+B2y+C2=0
平行
重合
(垂直)
(x0,y0)到直线Ax+By+C=0 的距离为______________.
∥l2,且其方程分别为:l1:Ax+By+C1=0 l2:Ax+By+C2=0,则l1与l2的距离为.
(三)两条直线的交角公式
若直线l1的斜率为k1,l2的斜率为k2,则
.
(简称夹角)θ满足.
(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.
(五)五种常用的直线系方程.
①过两直线l1和l2交点的直线系方程为A1x+B1y+C1+(A2x+B2y+C2)=0(不含l2).
②与直线y=kx+b平行的直线系方程为y=kx+m (m≠b).
③过定点(x0, y0)的直线系方程为y-y0=k(x-x0)及x=x0.
④与Ax+By+C=0平行的直线系方程设为Ax+By+m=0 (m≠C).
⑤与Ax+By+C=0垂直的直线系方程设为Bx-Ay+C1=0 (AB≠0).
典型例题
例1. 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,
(1)试判断l1与l2是否平行;
(2)l1⊥l2时,求a的值.
解(1)方法一当a=1时,l1:x+2y+6=0,
l2:x=0,l1不平行于l2;
当a=0时,l1:y=-3,
l2:x-y-1=0,l1不平行于l2;
当a≠1且a≠0时,两直线可化为
l1:y=--3,l2:y=-(a+1),
l1∥l2,解得a=-1,
综上可知,a=-1时,l1∥l2,否则l1与l2不平行.
方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,
由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,
∴l1∥l2
a=-1,
故当a=-1时,l1∥l2,否则l1与l2不平行.
(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,
l1与l2不垂直,故a=1不成立. 当a≠1时,l1:y=-x-3,
l2:y=-(a+1),
由·=-1a=.
方法二由A1A2+B1B2=0,得a+2(a-1)=0a=.
:ax+4y-20=0,l2:x+ay-b=0,当a、b满足什么条件时,直线l1与l2分别相交?平行?垂直?重合?
解:当a=0时,直线l1斜率为0,l2斜率不存在,两直线显然垂直。
当a≠0时,分别将两直线均化为斜截式方程为:l1:y= - x+5,l2:y= - x+ 。
(1)当- ≠- ,即a≠±2时,两直线相交。
(2)当- = - 且5≠时,即a=2且b≠10或a= -2且b≠-10时,两直线平行。
(3)由于方程(- )(- )= -1无解,故仅当a=0时,两直线垂直。
(4)当- =- 且5= 时,即a=2且b=10或a= -2且b=-10时,两直线重合.
例2. 已知直线l经过两条直线l1:x+2y=0与l2:3x-4y-10=0的交点,且与直线l3:5x-2y+3=0的夹角为,求直线l的方程.
解:由解得l1和l2的交点坐标为(2,-1),因为直线l3的斜率为k3=,l与l3的夹角为,所以直线l的斜率存在. 设所求直线l的方程为y+1=k(x-2).
则tan===1
k=或k=-,故所求直线l的方程为y+1=-(x-2)或y+1=(x-2)即7x+3y+11=0或3x-7y-13=0
变式训练2. 某人在一山坡P处观看对面山顶上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l,且点P在直线l上,l与水平地面的夹角为,tan=.试问,此人距水平地面多高时,观看塔的视角∠BPC最大(不计此人的身高)?
解如图所示,建立平面直角坐标系,
则A(200,0),B(0,220),C(0,300).
直线l的方程为y=(x-200)tan,则y=.
设点P的坐标为(x,y),则P(x, )(x>200).
由经过两点的直线的斜率公式
kPC=,
kPB=.
由直线PC到直线PB的角的公式得
tan∠BPC=
= (x>200).
要使tan∠BPC达到最大,只需x+-288达到最小,由均值不等式
x+-288≥2-288,
当且仅当x=时上式取得等号.
故当x=320时,tan∠BPC最大.
这时,点P的纵坐标y为y==
高考数学复习_平面解析几何初步 来自淘豆网m.daumloan.com转载请标明出处.