一、实验目的
掌握用乌氏粘度计测定高聚物溶液粘度的原理和方法。
测定线形高聚物聚乙二醇的粘均摩尔质量。
实验原理
单体分子经加聚或缩聚过程便可合成高聚物。并非高聚物每个分子的大小都相同,即聚合度不一定相同,所以高聚物摩尔质量是一个统计平均值。对于聚合和解聚过程机理和动力学的研究,以及为了改良和控制高聚物产品的性能,高聚物摩尔质量是必须掌握的重要数据之一。
高聚物溶液的特点是粘度特别大,原因在于其分子链长度远大于溶剂分子,加上溶剂化作用,使其在流动时受到较大的内摩擦阻力。
粘性液体在流动过程中,必须克服内摩擦阻力而做功。粘性液体在流动过程中所受阻力的大小可用粘度系数η(简称粘度)来表示(kg·m-1·s-1)。
高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η0三者之和。在相同温度下,通常η>η0,相对于溶剂,溶液粘度增加的分数称为增比粘度,记作ηsp,即
而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作ηr,即
ηr反映的也是溶液的粘度行为,而ηsp则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。
高聚物溶液的增比粘度ηsp往往随质量浓度c的增加而增加。为了便于比较,将单位浓度下所显示的增比粘度ηsp/c称为比浓粘度,而lnηr/C则称为比浓对数粘度。当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可以忽略,此时有关系式
[η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。由于ηr和ηsp均是无因次量,所以他们的单位是浓度C单位的倒数。
在足够稀的高聚物溶液里,ηsp/c与C和lnηr/c与c之间分别符合下述经验关系式:
上两式中κ和β分别称为Huggins和Kramer常数。这是两直线方程,通过ηsp/c对C或lnηr/c对c作图,外推至C=0时所得截矩即为[η]。显然,对于同一高聚物,由两线性方程作图外推所得截矩交于同一点,如图1。
图1 外推法求[η]图图2 乌氏粘度计
高聚物溶液的特性粘度[η]与高聚物摩尔质量之间的关系,通常用带有两个参数的Mark—Houwink经验方程式来表示:
式中是粘均摩尔质量,K、α是与温度、高聚物及溶剂的性质有关的常数,只能通过一些绝对实验方法(如膜渗透压法、光散射法等)确定。
本实验采用毛细管法测定粘度,通过测定一定体积的液体流经一定长度和半径的毛细管所需时间而获得。本实验使用的乌氏粘度计如图2所示。当液体在重力作用下流经毛细管时,其遵守Poiseuille定律:
式中η(kg·m-1·s-1)为液体的粘度;p(kg·m-1·s-2)为当液体流动时在毛细管两端间的压力差(即是液体密度ρ,重力加速度g和流经毛细管液体的平均液柱高度h这三者的乘积);r(m)为毛细管的半径;V(m3)为流经毛细管的液体体积;t(s)为V体积液体的流出时间;l(m)为毛细管的长度。
用同一粘度计在相同条件下测定两个液体的粘度时,它们的粘度之比就等于密度与流出时间之比
如果用已知粘度η1的液体作为参考液体,则待测液体的粘度
粘度法测定高聚物摩尔质量 来自淘豆网m.daumloan.com转载请标明出处.