第二章实数
1. 认识无理数(第2课时)
四川省成都市第二十中学校谢邦华
四川省成都市第三十三中学校杨洪芬
一、学生起点分析
学生在小学阶段已经学习了非负数,,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,能积极主动地参与到学习中,充分认识到学习无理数引入的必要性,发展学生的合情推理能力.
二、教学任务分析
《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感受数的发展,感知生活中确实存在着不同于有理数的数. 本课时为第二课时,内容是建立无理数的基本概念,借助计算器,感受无理数是无限不循环小数,会判断一个数是无理数,,在学习中领悟数学知识来源于生活,体会数学知识与现实世界的联系,,本节课的教学目标是:
,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.
,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.
,并说明理由,进一步体会分类思想,培养学生解决问题的能力.
,培养学生的合作精神,提高他们的辨识能力.
三、教学过程设计
本节课设计六个教学环节:
第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.
第一环节:新课引入
内容:想一想:
1. 有理数是如何分类的?
整数(如,0,2,3,…)
有理数
分数(如,,,,…)
2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率,…上节课又了解到一些数,如,中的a,b不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.
意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.
效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”.
第二个环节:活动与探究
1. 探索无理数的小数表示
内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a和面积为5的正方形的边长b进行估计.
请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.
边长a
面积s
1<a<2
1<s<4
<a<
<s<
<a<
<s<
<a<
<s<
<a<
<s<
归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,,它们是无限不循环小数.
请大家用上面的方法估计面积为5的正方形的边长b的值.
目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=…,b=…,是无限不循环小数的过程,体会无限逼近的思想.
效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础.
2. 探索有理数的小数表示,明确无理数的概念
内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.
议一议:分数化成小数,最终此小数的形式有哪几种情况?
探究结论:分数只能化成有限小数或无限循环小数.
即任何有限小数或无限循环小数都是有理数.
强调:…,…,-…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.
我们把无限不循环小数叫做无理数.(圆周率=…也是一个无限不循环小数,故是无理数).
目的:通过学生的活动与探究,得出无理数的概念.
效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.
第三个环节:知识分类整理
内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).
有理数:有限小数或无限循环小数
无理数:无限不循环小数
1.2 认识无理数(第2课时)教学设计 来自淘豆网m.daumloan.com转载请标明出处.