现在一般都用第二种方法,又分两种添加方法:
1 添加样品中含量一半的80%、100%和120%,每个两份
2 添加样品中含量一半的50%、100%和150%,每个两份。这两种都可以的
计算时添加后测得的含量与原来样品的含量一半之差作分子,添加的含量做分母,并计算这6个结果的RSD,小于3%即可。
关于加样回收率的讨论已有报道[1-3],虽对加样回收率的两种计算方法均从不同侧面做了较透彻的讨论与选择,但均忽略了原样品(实际样品)中待测组分含量确定的方法及其误差性质对回收率结果可靠性的影响,有必要做进一步的探讨作为补充。设原样品中待测组分的真实量为Xo,待测组分纯品标准加入的真实量为Yo,为统一讨论,我们把Yo的获得及加入过程也看为一种测量,那么,Xo、Yo及其总量的测得量分别为X、Y和Z,它们的测量误差分别为EX、EY和EZ,则目前回收率R有如下两种计算方法依据测得Xo的方法不同分以下两种情况讨论。
1成熟方法包括药典法及可靠的文献法。
由于选用的方法成熟可靠,测量误差小, 则EX可忽略,而且Yo的获得及加入过程一般是可靠的,Ey亦可忽略,则(1)、(2)式可分别简化为(3)、(4)式:两式中,R唯一地与测量误差EZ相关,理论上讲,可以用来检验拟订方法的准确度。2拟订方法同上讨论,Ey可以忽略,但由于X0是按拟订方法测得的,故E X不可盲目忽略,则(1)、(2)式可分别简化为(5)、(6)式:R并不唯一地与EZ相关,还与测定原样品中Xo的误差EX有关,是否可以用来检验拟订方法的准确度需要做进一步的讨论。测量误差按其性质分为两类:偶然误差和系统误差,系统误差又包括恒定误差和比例误差。偶然误差可以通过增加试验次数来消除,本文不做更深讨论,而系统误差却会给测定带来固定方向的偏差。
:此时EX=EZ,所以(5)、(6)式可写为(7)、(8 )式:即在该情况下,无论拟订方法的误差多大,回收率均为100%。结果显然是不可靠的。
2 .2系统误差为比例误差:设比例误差的比例系数为E,则EX=E·Xo,EZ=E·(Xo+ Yo),则(5)、(6)式可分别写成(9)、(10)式:回收率的实质是单位真实量的测得量,而E是单位真实量的测量误差,所以R应等于1+E,此时,用(9)式计算回收率是可靠的,而用(10)式计算,R随Xo/(Xo+Yo)的值变化而变化,当且仅当Xo/(Xo+Y o)=0,即Xo=0或Yo为无穷大时,R=1+E。但前者回收率试验实质上已是模拟样品回收率,而后者已变为纯品回收率试验,均不在本文讨论范围之内。上面讨论的是两种极端情况,而在实际工作中,测量误差既包括恒定误差,又包括比例误差,文献认为:“仪器由于灵敏度等原因,测量一般为恒定误差,而方法误差也不全为比例误差,”另外,由于操作者造成的误差也往往表现为恒定误差,如对滴定终点指示剂变色的判断等。这说明目前定量研究的误差多属恒定误差,所以用拟订方法测定原样品中待测组分的含量后计算回收率的方法并不可靠。因此,虽然目前绝大多数药物分析工作者在做加样回收率计算时均使用(1)式,认为测得总量减去原样品测得量后即可消除原样品中待测组分含量及其测量误差的影响,但却未考虑到并非所有情况下均适用,反而会因此获得一个不真实的回收率,错误判断拟订方法的准确度。例:我们把某一测定方法假设
加样回收试验 来自淘豆网m.daumloan.com转载请标明出处.