分数应用题的解题方法
一找二定三列式
1、找准单位“1”的量。
2、确定单位“1"是已知还是未知?
3、 单位“1”的量×分率=分率对应量
分率对应量(已知数)÷对应分率=单位“1”的量
4、 比单位“1”多就用(1+﹍),比单位“1”少就用(1-﹍)。
笔者在几年小学毕业班数学教学实践中,深刻认识到:分数、百分数、工程问题,是小学生最难理解和难于掌握的内容,而这三种内容的应用题又是小学生更难的,而又必须掌握的知识之一。而单位“1”好比是解答这难题的一把金钥匙,利用得当可帮助学生理解题意、掌握解题思路、发展思维,提高学生解题能力和技巧,可起到事半功倍的作用。因此,教师在教学中引导学生掌握单位“1”的运用方法很有必要。
首先要让学生认清单位“1”,它不同于自然数中的“1”,它可表示数字“1”,更重要的是它在分数、百分数、比类,工程问题应用题中表示“一个单位、一个整体”,这在教学中就叫单位“1”或“整体1”。故单位“1”可表示“一个总量、一个部分、一项工程的总量、一批物件”等。所有单位“1”的量叫标准量,与它相比的叫比较量,在解答应用题时,如单位“1”的量已知,就用单位“1”的量乘以所求量对应的分率;如求单位“1”的量,就用已知量除以已知量的对应分率。由于用单位“1”计算方法固定,故只要选好单位“1”,就可知计算方法,这就解决了学生不知用什么方法计算这一难题。而选择单位“1”一般以“总量、不变量、两者相比的后项、几分之几的对象”为单位“1”。下面谈谈单位“1”的运用。
一、单位“1”在分数应用题中的运用
这类应用题一般把总量看作单位“1”。例(1):一堆煤有50吨,用去3/5后,还剩多少吨? 分析:本题应把总量一堆煤看作单位“1”,用去的单位“1”
的3/5,剩下的占单位“1”的(1-3/5)(剩下量对应分率),由于单位“1”量已知而用乘法,求剩下量列式为:50×(1-3/5)。例(2):一堆煤,第一次运走总吨数的1/3,第二次运走总吨数的1/4,还剩65吨没运,求这堆煤有多少吨? 分析:本题与例(1)一样把总量看作单位“1”,剩下的占单位“1”的(1-1/3-1/4),但这题求单位“1”的量而用除法,列式为:65÷(1-1/3-1/4)=156吨。由上两例可知:当总量变化时,单位“1”在解题过程中起了关键作用。但当总量不变,总量里的几种部分量都变化时又怎样解呢? 例(3):甲乙两粮仓,甲仓存量吨数是乙仓的5倍,如从甲仓运出628吨粮存入乙仓,则乙仓存粮是甲的5倍,甲仓原有存粮多少吨? 分析:这题应把两仓总存粮数看作单位“1”,由于甲乙两仓存粮数前后发生变化,原来甲占两仓总量的5/(15),后来甲占两仓总量的1/(15),则原甲比后甲多的628吨的对应分率是(5/6-1/6)。故总量是628÷(5/6-1/6),而原甲仓存粮为628÷(5/6-1/6)×5/6。因此,当总量不变,而分量都变化,还是用单位“1”,解题可起简便思路的作用。如总量变,分量里有种变、有种不变的题呢?同样可用单位“1”法求解。例(4):甲乙两人共储蓄人民币315元,甲储蓄
分数应用题的解题方法 来自淘豆网m.daumloan.com转载请标明出处.