下载此文档

我国税收收入预测模型的浅析与应用.doc


文档分类:论文 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
我国税收收入预测模型的浅析与应用
作者简介:李?(1993―),女,汉族,黑龙江省北安市人,学生,管理学学士,单位:东北石油大学工商管理专业,研究方向:税收收入预测模型的应用研究。
摘要:税收作为地方财政收入的主要来源,同地区经济增长密切相关。目前,国内外学者关于税收收入预测的方法有很多,主要分为定性分析和定量预测两大类,本文在前期相关文献的基础上,重点对基于时间序列分析方法的统计模型在我国税收收入预测中的应用进行概括和总结,并在此基础上提出进一步研究的可能性。
关键词:VAR模型;ECM模型;税收收入预测;协整分析
一、税收收入预测的意义
具体而言,我国税收收入预测的功能主要体现在三个方面:第一,事前预测,为税务部门制定年度税收计划提供数据支撑。此外,立足于地区经济发展的实际情况,增强预见性,帮助税务工作者根据经济变化实时调整相应的政策。第二,事中管理。税收计划执行过程中,每一个季度、年度都可以通过增值税收入预测模型实时追踪税收计划完成进度,衡量增值税目标完成情况,为后续税源管理、税收征管等工作提供帮助。第三,事后反馈。税收收入预测是基于经济因素对增值税收入的影响,但于此同时增值税作为地区经济体系的组成部分,反作用于其他经济变量。通过对增值税收入的预测结果与同期增值税收入的真实数值比较分析,不仅可以发现非经济因素变量对增值税收入的影响,不断完善税收收入预测模型,还可以制定相应的政策措施在影响增值税的同时调节整个地区的经济状况。综上所述,税收收入预测是一个十分值得研究的课题,不仅有现实层面的意义,而且利用统计建模的思想对经济变量进行分析预测具有一定的理论研究意义。
二、税收预测在国内的研究现状
我国关于税收收入预测的研究从80年代后期开始,前后共经历三个阶段,第一阶段主要是定性分析,以数据图表为基础,重点分析税收同经济变量之间的关联性,以理论研究为主,方法性不高;第二阶段的研究开始引入计量经济学的方法,比如趋势性预测,常见的有以GDP为自变量的一元线性回归和多经济指标多元回归等,另外,曲线回归模型和指数回归模型应用于税收收入预测的研究方法也开始涌现。第三阶段从90年代后期开始,主要是把时间序列分析的方法应用到税收预测当中去,这一阶段的文献大都涉及到统计模型在税收预测中实证研究,结果表明,模型的预测精度高,拟合效果好,因此这类模型在实际工作中应用的可能性也比较大,在下文中会对两个典型的时间序列预测模型进行比较详细的阐述。第四阶段是各类新型统计方法应用到税收预测当中,比较典型的是计算机模拟方法的应用,比如组合预测的方法、纳税评估仿生模型等。另外,统计软件的应用也越来越广泛,常见的有常见的有E-VIEWS、SPSS、SAS、STATA等,方便我们进行数据处理、模型的构建与求解等。下文将对时间序列分析中两个典型的税收预测模型进行重点介绍:
三、自向量回归模型(VAR)
简单来说,向量自回归模型(VAR)是以变量的历史数据为依托,分析变量间相关关系构造时间序列变量回归方程。VAR模型同传统的回归模型相比,其优势在于VAR模型只需确定变量间相互关系就可以得到回归方程,方程中只含有相互关联的变量,避免主观界定解释变量和被解释变量而导致部分变量的缺失。VAR模型的E-views软件操作包括四步:变量的平稳性和单位根检验;对相关

我国税收收入预测模型的浅析与应用 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数6
  • 收藏数0 收藏
  • 顶次数0
  • 上传人sdhdjhty
  • 文件大小0 KB
  • 时间2015-08-30