神经网络及应用实验报告实验二、基于BP网络的多层感知器一:实验目的::实验原理:BP的基本思想:信号的正向传播误差的反向传播–信号的正向传播:输入样本从输入层传入,经各隐层逐层处理后,传向输出层。–误差的反向传播:将输入误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号来作为修正各单元权值的依据。基本BP算法的多层感知器模型::当网络输出与期望输出不等时,存在输出误差E将上面的误差定义式展开至隐层,有进一步展开至输入层,有调整权值的原则是使误差不断地减小,因此应使权值的调整量与误差的梯度下降成正比,即η∈(0,1)表示比例系数,在训练中反应学习速率BP算法属于δ学习规则类,这类算法被称为误差的梯度下降(GradientDescent)算法。<实验步骤>,实现解决该问题的单样本训练BP网络,设置一个停止迭代的误差Emin和最大迭代次数。在调试过程中,通过不断调整隐层节点数,学习率η,找到收敛速度快且误差小的一组参数。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进行比较计算总误差(运行5次,取平均值),并记录下每次迭代结束时的迭代次数。(要求误差计算使用RME,)程序如下:functiondyb%单样本程序clc;closeall;clear;=;%阈值j=input('请输入隐层节点数j=');%隐层节点数n=input('请输入学习效率n=');%学习效率w=rand(1,j);w=[yuzhi,w];%输出层阈值v=rand(2,j);v(1,:)=yuzhi;%隐层阈值err=zeros(1,101);wucha=0;zhaosheng=*randn(1,101);%噪声erro=[];ERRO=[];%误差,为画收敛曲线准备Emin=;d=zeros(1,101);form=1:101d(m)=hermit(x(m,2));%期望end;o=zeros(1,101);netj=zeros(1,j);net=zeros(1,j);p=1;q=1;azc=0;acs=0;forz=1:5whileq<30000Erme=0;forp=1:101y=zeros(1,j);fori=1:jnetj(1,i)=x(p,:)*v(:,i);y(1,i)=1/(1+exp(-netj(1,i)));end;y=[-1y];o(p)=w*y'+zhaosheng(p);%噪声wucha=d(p)-o(p);err(1,p)=1/2*wucha^2;erro=[erro,wucha];form=1:j+1w(1,m)=w(1,m)+n*wucha*y(1,m);end;form=1:jv(:,m)=v(:,m)+n*wucha*w(1,m)*y(1,m)*(1-y(1,m))*x(p,:)';endq=q+1;end;fort=1:101;Erme=Erme+err(1,t);end;err=zeros(1,101);Erme=sqrt(Erme/101);ERRO=[ERRO,Erme];ifErme<Eminbreak;end;end;azc=azc+Erme;acs=acs+q;enddisp('最终误差:');pinjunwucha=1/5*azcfigure(1);plot(x(:,2),d,'--r');holdon;plot(x(:,2),o,'--b');disp('次数:');pjcx=1/5*acsfigure(2);plot(ERRO);figure(3);plot(x(:,2),d,'--rp');endfunctionF=hermit(x)%hermit子函数F=*(1-x+2*x^2)*exp(-x^2/2);end运行结果如下:,调整参数如上。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进
神经网络基于BP网络的多层感知器实验报告 来自淘豆网m.daumloan.com转载请标明出处.