下载此文档

八年级数学一次函数应用.doc


文档分类:中学教育 | 页数:约11页 举报非法文档有奖
1/11
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/11 下载此文档
文档列表 文档介绍
八年级数学一次函数应用.doc§ 专题: 一次函数应用(一)
教学目标
;
,用一次函数表达式解决有关现实问题.
3、体会用“数形结合”思想解决数学问题.
教学重难点
待定系数法确定一次函数解析式
教学过程
Ⅰ.提出问题,创设情境
一次函数关系式y=kx+b(k≠0),如果知道了k与b的值,函数解析式就确定了,那么有怎样的条件才能求出k和b呢?
问题1 已知一个一次函数当自变量x=-2时,函数值y=-1,当x=3时,y=-?
根据一次函数的定义,可以设这个一次函数为:y=kx+b(k≠0),问题就归结为如何求出k与b的值.
由已知条件x=-2时,y=-1,得-1=-2k+b.
由已知条件x=3时,y=-3, 得-3=3k+b.
两个条件都要满足,即解关于x的二元一次方程
解得
所以,一次函数解析式为.
问题2 已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克),挂4千克质量的重物时,,求这个一次函数的关系式.
考虑这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,,与一次函数关系式中的两个x、y有什么关系?
Ⅱ.导入新课
上题可作如下分析:
已知y是x的函数关系式是一次函数,则关系式必是y=kx+b的形式,所以要求的就是系数k和b ,也就是当x=0时,y=6;当x=4时,y=,转化为求k与b 的二元一次方程组,进而求得k与b的值.
解设所求函数的关系式是y=kx+b(k≠0),由题意,得
解这个方程组,得
所以所求函数的关系式是y=+6.(其中自变量有一定的范围)
讨论 ,求解k和b的过程,转化为关于k和b的二元一次方程组的问题.
,自变量往往有一定的范围.
问题3 若一次函数y=mx-(m-2)过点(0,3),求m的值.
分析考虑到直线y=mx-(m-2)过点(0,3),说明点(0,3)在直线上,这里虽然已知条件中没有直接给出x和y的对应值,但由于图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,=0时,y=3,.
解当x=0时,y=:3=-(m-2).解得m=-1.
这种先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法
Ⅲ.例题与练习
例1 已知一次函数y=kx+b的图象经过点(3,5)和点(-4,-9),求当x=5时,函数y的值.
分析 (3,5)和点(-4,-9),即已知当x=3时,y=5;x=-4时,y=-,求出k与b.
,但因为要求x=5时,函数y的值,仍需从求函数解析式着手.
解由题意,得
解这个方程组,得
这个函数解析式为y=2x-1
当x=5时,y=2×5-1=9.
例2 已知一次函数的图象如下图,写出它的关系式.
分析从“形”看,图象经过x轴上横坐标为2的点,y轴上纵坐标是-“数”看,坐标(2,0),(0,-3)满足解析式.
解设:所求的一次函数的解析式为y=kx+b(k≠0).
直线经过点(2,0),(0,-3),把这两点坐标代入解析式,得
解得
所以所求的一次函数的关系式是.
例3 若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.
分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.
解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.
Ⅳ.课时小结
本节课,我们讨论了一次函数解析式的求法。求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式
y=kx+b(k≠0)中两个待定系数k和b的值;
Ⅴ.课后作业
.
(1)直线y=kx+5经过点(-2,-1);
(2)一次函数中,当x=1时,y=3;当x=-1时,y=7.
,使它们的图象都经过点(-2,3).
,并写出行李费y(元)与行

八年级数学一次函数应用 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数11
  • 收藏数0 收藏
  • 顶次数0
  • 上传人ttteee8
  • 文件大小163 KB
  • 时间2018-09-17