中学解析几何的核心结构
──“中学数学中的解析几何”之三
人民教育出版社中学数学室章建跃
从前所述可见,解析几何把代数的知识和方法系统地用于研究几何,数形结合的思想和方法不但使代数、几何获得了前所未有的进展,而且还使微积分的发明水到渠成。因此,解析几何既是沟通代数与几何的桥梁,也是从初等数学过渡到高等数学的桥梁。
由于人类活动的需要,解决天体运动、抛射体运动、单摆运动等各种运动问题成为数学的重大课题。而运动可以从两个角度看:一是作为点的轨迹;二是作为位置与时间的关系。数学史上,在函数概念还没有充分认识之前,函数被当作曲线来研究,例如,正弦曲线是在旋轮线的研究中作为它的“伴侣曲线”而进入数学的。后来,人们使用运动的概念来引进曲线,例如,伽利略证明了斜抛体的运动轨迹是抛物线,因而把抛物线看成是动点的轨迹;牛顿说,曲线是由于点的连续运动而描画出来的。把曲线看成是动点的轨迹这一概念逐渐地被认可和接受以后,函数(变量之间的关系)与曲线的联系就很紧密了,从而也就使解析几何与函数的联系更紧密了。某种意义上看,由于借助于坐标系而描绘了函数图象,使抽象的函数得到形象直观的表示,从而使研究函数的方法更加多样而有力,对函数性质的认识也更加全面而具体。当然,“函数与图象”、“曲线与方程”毕竟是两个不同的问题。例如,函数y=f(x)中,x,y的地位“不平等”,函数y随自变量x的变化而变化,两者有依赖关系;方程f(x,y)=0中,x,y的地位“平等”,虽然也有依赖关系,但并没有一个随另一个变化的关系;函数中,x,y之间有特殊的对应关系(单值对应),表现在图象上,就是平行于y轴的直线与图象至多有一个交点;方程的解没有这种限制,所以交点可以不止一个;借助函数的图象讨论性质,这里的“性质”是函数的变化规律,由方程讨论曲线的性质,这里的“性质”是曲线的几何性质。
另一方面,众所周知,解析几何的研究对象与欧氏几何相同,但是它们的研究方法不同,这里不再赘述。
综上所述,中学数学中的解析几何以数形结合思想为指导,以坐标法为核心,以空间形式为研究对象,用代数方法研究几何;与函数知识紧密联系,是初等数学通向高等数学的桥梁。因此,解析几何是融中学代数、几何、三角等为一体的综合性课程。通过解析几何学习,可以使学生对已学知识融会贯通,把数和形的研究紧密地结合起来,提高综合应用数学知识的能力。同时,系统地掌握解析几何的基础知识,也为今后学习高等数学奠定了坚实的基础。
解析几何的教学目标体系可以从知识、方法、思想、观点等几个层次进行构建。在确定这一目标体系时,要特别注意从解析几何的学科特点出发。
考察解析几何的学科特点,最重要的是它的“方法论”特征;另外就是它的“综合性”,首先是用代数方法研究几何问题,同时,用几何的眼光处理代数问题(几何直观能力的体现)。据此,解析几何的首要教学目标应是理解“坐标法”,具体包括用坐标法解决问题的过程和要素(“三步曲”)以及在应用坐标法过程中体现的数形结合思想。当然,要让中学生通过解析几何的学习完全掌握坐标法是不现实的。因为虽然从方法本身看非常朴实,但中学的解析几何中处理的内容相对简单,还不足以表现坐标法的力量,所以只能要求学生初步掌握方法,初步学会用坐标法思想思考和处理问题,并注意在其它学科的学习中渗透。
思想方法必须有具体知识作为载体才能被领会,也只有和具体知识融为一体才能发挥作用。因此,坐标法必须在解析几何知识的学面曲线,以这两种曲线为载体学习解析几何,可以更好地使学生把精力集中于坐标法的领悟。具体的知识目标是:
掌握直角坐标系中曲线与方程的关系。
能根据直线、圆锥曲线的几何特征,选择适当的直角坐标系,建立直线方程和圆锥曲线方程;能通过直线方程、圆锥曲线方程讨论它们的性质。
一般地,能根据问题的几何特征,选择适当的坐标系建立曲线方程,并能通过方程研究曲线的性质。
能利用坐标变换化简曲线方程。
了解一些重要曲线的极坐标方程和参数方程。
更高层次地看,由于解析几何是运用辩证法思想分析和解决问题的典范,因此教学中应利用这一特点,培养学生用运动、变化和对立统一等观点分析和解决问题,领会辩证法思想。
(1)总体结构
(2)直线与方程
(3)圆锥曲线与方程
几点说明:
第一,数形结合思想和坐标法是统领全局的,曲线与方程的关系(一种充要条件)是讨论各种具体问题的基础,但这些都是“默会知识”,要采取逐步渗透的方法使学生领会和掌握。在学习直线与方
中学解析几何核心结构 来自淘豆网m.daumloan.com转载请标明出处.