下载此文档

外接球内切球问题答案.doc


文档分类:外语学习 | 页数:约8页 举报非法文档有奖
1/8
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/8 下载此文档
文档列表 文档介绍
1 球与柱体
规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.
球与正方体
发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题
例 1 棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( )A. B. C. D.
球与长方体长方体各顶点可在一个球面上,,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径
例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( ) A. C. D.
球与正棱柱
例3 正四棱柱的各顶点都在半径为的球面上,则正四棱柱的侧面积有最值,为.
2 球与锥体
规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.
球与正四面体
解得:这个解法是通过利用两心合一的思路,,,可为解题带来极大的方便.
例4 将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最
小值为( )
A. B. 2+ C. 4+ D.
球的外切正四面体,这个小球球心与外切正四面体的中心重合,而正四面体的中心到顶点的距离是中心到地面距离的3倍.]
球与三条侧棱互相垂直的三棱锥
球与三条侧棱互相垂直的三棱锥组合问题,
例5 在正三棱锥中,分别是棱的中点,且,若侧棱,则正
球与正棱锥
球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径
.这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.
例6 在三棱锥P-ABC中,PA=PB=PC=,侧棱PA与底面ABC所成的角为60°,则该三棱锥外接球的体积为( )
A. B. C. 4 D.
接球的球心,则.
例7 矩形中,沿将矩形折成一个直二面角,则四面体的外接球的体积是( )
A. B. C. D.
3 球与球
对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解.
4 球与几何体的各条棱相切
球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位
置为目的,然后

外接球内切球问题答案 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数8
  • 收藏数0 收藏
  • 顶次数0
  • 上传人2072510724
  • 文件大小1.06 MB
  • 时间2018-10-13