主成分分析和因子分析
吴喜之
1
汇报什么?
假定你是一个公司的财务经理,掌握了公司的所有数据,比如固定资产、流动资金、每一笔借贷的数额和期限、各种税费、工资支出、原料消耗、产值、利润、折旧、职工人数、职工的分工和教育程度等等。
如果让你向上面介绍公司状况,你能够把这些指标和数字都原封不动地摆出去吗?
当然不能。
你必须要把各个方面作出高度概括,用一两个指标简单明了地把情况说清楚。
2
主成分分析
每个人都会遇到有很多变量的数据。
比如全国或各个地区的带有许多经济和社会变量的数据;各个学校的研究、教学等各种变量的数据等等。
这些数据的共同特点是变量很多,在如此多的变量之中,有很多是相关的。人们希望能够找出它们的少数“代表”来对它们进行描述。
本章就介绍两种把变量维数降低以便于描述、理解和分析的方法:主成分分析(ponent analysis)和因子分析(factor analysis)。实际上主成分分析可以说是因子分析的一个特例。在引进主成分分析之前,先看下面的例子。
3
成绩数据()
100个学生的数学、物理、化学、语文、历史、英语的成绩如下表(部分)。
4
从本例可能提出的问题
目前的问题是,能不能把这个数据的6个变量用一两个综合变量来表示呢?
这一两个综合变量包含有多少原来的信息呢?
能不能利用找到的综合变量来对学生排序呢?这一类数据所涉及的问题可以推广到对企业,对学校进行分析、排序、判别和分类等问题。
5
空间的点
例中的的数据点是六维的;也就是说,每个观测值是6维空间中的一个点。我们希望把6维空间用低维空间表示。
先假定只有二维,即只有两个变量,它们由横坐标和纵坐标所代表;因此每个观测值都有相应于这两个坐标轴的两个坐标值;如果这些数据形成一个椭圆形状的点阵(这在变量的二维正态的假定下是可能的)
那么这个椭圆有一个长轴和一个短轴。在短轴方向上,数据变化很少;在极端的情况,短轴如果退化成一点,那只有在长轴的方向才能够解释这些点的变化了;这样,由二维到一维的降维就自然完成了。
6
7
椭球的长短轴
当坐标轴和椭圆的长短轴平行,那么代表长轴的变量就描述了数据的主要变化,而代表短轴的变量就描述了数据的次要变化。
但是,坐标轴通常并不和椭圆的长短轴平行。因此,需要寻找椭圆的长短轴,并进行变换,使得新变量和椭圆的长短轴平行。
如果长轴变量代表了数据包含的大部分信息,就用该变量代替原先的两个变量(舍去次要的一维),降维就完成了。
椭圆(球)的长短轴相差得越大,降维也越有道理。
8
9
主轴和主成分
对于多维变量的情况和二维类似,也有高维的椭球,只不过无法直观地看见罢了。
首先把高维椭球的主轴找出来,再用代表大多数数据信息的最长的几个轴作为新变量;这样,主成分分析就基本完成了。
注意,和二维情况类似,高维椭球的主轴也是互相垂直的。这些互相正交的新变量是原先变量的线性组合,叫做主成分(ponent)。
10
主成分分析和因子分析 来自淘豆网m.daumloan.com转载请标明出处.