下载此文档

极限计算方法总结(简洁版).doc


文档分类:高等教育 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
极限计算方法总结(简洁版)
一、极限定义、运算法则和一些结果
:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。
说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;;;等等
(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。

定理1 已知,都存在,极限值分别为A,B,则下面极限都存在,且有(1)
(2)
(3)
说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

(1)
(2) ;
说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,
作者简介:靳一东,男,(1964—),副教授。
例如:,,;等等。

定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当时,下列函数都是无穷小(即极限是0),且相互等价,即有:
~~~~~~ 。
说明:当上面每个函数中的自变量x换成时(),仍有上面的等价
关系成立,例如:当时, ~ ; ~ 。
定理4 如果函数都是时的无穷小,且~,
~,则当存在时,也存在且等于,即=。

定理5 假设当自变量x趋近于某一定值(或无穷大)时,函数和满足:(1)和的极限都是0或都是无穷大;
(2)和都可导,且的导数不为0;
(3)存在(或是无穷大);
则极限也一定存在,且等于,即= 。
说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不满足,洛比达法则就不能应用。特别要注意条件(1)是否满足,即验证所求极限是否为“”型或“”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。

定理6 一切连续函数在其定义去间内的点处都连续,即如果是函数的定义去间内的一点,则有。

定理7(准则1) 单调有界数列必有极限。
定理8(准则2) 已知为三个数列,且满足:
(1)
(2) ,
则极限一定存在,且极限值也是a ,即。
二、求极限方法举例
用初等方法变形后,再利用极限运算法则求极限
例1
解:原式= 。
注:本题也可以用洛比达法则。
例2
解:原式= 。
例3
解:原式。
利用函数的连续性(定理6)求极限
例4
解:因为是函数的一个连续点,
所以原式= 。
利用两个重要极限求极限
例5
解:原式= 。
注:本题也可以用洛比达法则。
例6
解:原式= 。
例7
解:原式= 。
利用定理2求极限
例8
解:原式=0 (定理2的结果)。
利用等价无穷小代换(定理4)求极限
例9
解:~,~,
原式= 。
例10
解:原式= 。
注:下面的解法是错误的:
原式= 。
正如下面例题解法错误一样:

例11
解:,
所以,

极限计算方法总结(简洁版) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息