下载此文档

备战2010高考数学――压轴题跟踪演练系列五.doc


文档分类:中学教育 | 页数:约10页 举报非法文档有奖
1/10
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/10 下载此文档
文档列表 文档介绍
备战2010高考数学――压轴题跟踪演练系列五
1.(本小题满分14分)
已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足
(Ⅰ)设为点P的横坐标,证明;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=若存在,求∠F1MF2
的正切值;若不存在,请说明理由.
本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,.
(Ⅰ)证法一:设点P的坐标为
由P在椭圆上,得
由,所以………………………3分
证法二:设点P的坐标为记


证法三:设点P的坐标为椭圆的左准线方程为
由椭圆第二定义得,即
由,所以…………………………3分
(Ⅱ)解法一:设点T的坐标为
当时,点(,0)和点(-,0)在轨迹上.
当|时,由,得.
又,所以T为线段F2Q的中点.
在△QF1F2中,,所以有
综上所述,点T的轨迹C的方程是…………………………7分
解法二:设点T的坐标为当时,点(,0)和点(-,0)在轨迹上.
当|时,由,得.
又,所以T为线段F2Q的中点.
设点Q的坐标为(),则
因此①
由得②
将①代入②,可得
综上所述,点T的轨迹C的方程是……………………7分


(Ⅲ)解法一:C上存在点M()使S=的充要条件是

由③得,由④得所以,当时,存在点M,使S=;
当时,不存在满足条件的点M.………………………11分
当时,,
由,
,
,得
解法二:C上存在点M()使S=的充要条件是



由④得上式代入③得
于是,当时,存在点M,使S=;
当时,不存在满足条件的点M.………………………11分
当时,记,
由知,所以…………14分
2.(本小题满分12分)
函数在区间(0,+∞)内可导,导函数是减函数,且设
是曲线在点()得的切线方程,并设函数
(Ⅰ)用、、表示m;
(Ⅱ)证明:当;
(Ⅲ)若关于的不等式上恒成立,其中a、b为实数,
求b的取值范围及a与b所满足的关系.
本小题考查导数概念的几何意义,函数极值、、
(Ⅰ)解:…………………………………………2分
(Ⅱ)证明:令
因为递减,所以递增,因此,当;
,且是极小值点,可知的
最小值为0,因此即…………………………6分
(Ⅲ)解法一:,是不等式成立的必要条件,以下讨论设此条件成立.
对任意成立的充要条件是

另一方面,由于满足前述题设中关于函数的条件,利用(II)的结果可知,的充要条件是:过点(0,)与曲线相切的直线的斜率大于,该切线的方程为
于是的充要条件是…………………………10分
综上,不等式对任意成立的充要条件是

显然,存在a、b使①式成立的充要条件是:不等式②
有解、解不等式②得③

备战2010高考数学――压轴题跟踪演练系列五 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数10
  • 收藏数0 收藏
  • 顶次数0
  • 上传人追风少年
  • 文件大小0 KB
  • 时间2011-09-07
最近更新