数列知识点总结
数列是高考试题中的重头戏,每年的全国及各地的考题中必有涉及. 从内容上看主要考查等差(比)数列的定义、通项、前项和公式、等差(比)数列的中项及数列的性质,占分值约17分. 因此学好数列这块知识显得尤为重要. 为了让学生更好地掌握数列,现将等差(比)数列的有关知识归纳总结如下.
1. 等差数列的定义与性质
定义:(为常数),
等差中项:成等差数列
前项和
性质:是等差数列
(1)若,则
(2)数列仍为等差数列,仍为等差数列,公差为;
(3)若三个成等差数列,可设为
(4)若是等差数列,且前项和分别为,则
(5)为等差数列(为常数,是关于的常数项为0的二次函数)
的最值可求二次函数的最值;或者求出中的正、负分界项,
即:当,解不等式组可得达到最大值时的值.
当,由可得达到最小值时的值.
(6)项数为偶数的等差数列,有
,.
(7)项数为奇数的等差数列,有
,
,.
2. 等比数列的定义与性质
定义:(为常数,),.
等比中项:成等比数列,或.
前项和:(要注意!)
性质:是等比数列
(1)若,则
(2)仍为等比数列,公比为.
注意:由求时应注意什么?
时,;
时,.
(1)求差(商)法
如:数列,,求
解时,,∴①
时, ②
①—②得:,∴,∴
[练习]数列满足,求
注意到,代入得;又,∴是等比数列,
时,
(2)叠乘法
如:数列中,,求
解,∴又,∴.
(3)等差型递推公式
由,求,用迭加法
时,两边相加得
∴
[练习]数列中,,求()
(4)等比型递推公式
(
数列知识点总结 来自淘豆网m.daumloan.com转载请标明出处.