hadoop,数据挖掘,解决方案
篇一:基于HADOOP的数据挖掘平台分析与设计
基于HADOOP的数据挖掘平台分析与设计
【摘要】云计算技术的出现为数据挖掘技术的发展带来了新的机遇。云计算技术通过使存储和计算能力均匀的分布到集群中的多个存储和计算节点上,从而实现了对超大数据集的巨大的存储和计算能力。HADOOP是一个用于构建云平台的Apache开源项目。使用HADOOP框架有利于我们方便、快速的实现计算机集群。在HADOOP平台上,采用了HDFS(分布式文件系统)来实现超大文件的存储和容错,而使用了MapReduce的编程模式来进行计算。
【关键词】HADOOP;数据挖掘;平台;分析;设计
一、数据挖掘技术概述
作为一门快速发展的技术,数据挖掘引起了信息产业界和社会的广泛关注。数据挖掘技术跨越多个学科,无论是数据库技术、机器学习、统计学、模式识别,还是神经网络,还是人工智能,数据挖掘都能从中吸取营养,不断发展。如今,随着云计算的出现和发展,数据挖掘技术迎来了新的机遇和挑战。
数据挖掘由单个算法,单个系统到并行数据挖掘与服务的模式,经历了数据挖掘软件开始和数据库结合、多种数据类型融合、分布式挖掘等多个过程。到今天,数据挖掘软件发展的历程,可以说是进入基于云计算的数据挖掘。
由于数据挖掘是一个交叉学科领域,是在包括机器学习,模式识别等多个学科的基础上发展而来。依赖于我们所用的数据挖掘方法,我们又可以使用其他学科的多种技术,如神经网络、模糊或粗糙集合论、知识表示等。所以,对数据挖掘的研究,我们会期望出现大量的各种类型的数据挖掘系统。这样,我们就需要对数据挖掘系统给出一个很清楚的分类。有了这种认识,我们才可以帮助用户根据其需求,确定最适合其需要的数据挖掘系统。
因此,数据挖掘的分类标准也必定会出现多样化。我们可以根据挖掘的数据库类型分类,或是技术类型分类,也可以根据运用的场景分类。但是大部分情况下,我们会根据挖掘产生的知识类型进行分类,也即是根据数据挖掘的功能进行分类。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程,表现形式为规则、概念、规律及模式等。数据挖掘主要由以下步骤组成:
①数据预处理数据
篇二:Hadoop:大数据解决方案的常胜将军
Hadoop:大数据解决方案的常胜将军
?
结构化数据、面向文档数据存储及大型处理。猜猜它是什么。
关键词:大数据解决方案 Hadoop Hive Mahout HBase Cassandra
架构大数据解决方案的软件工程师们都知道,业务分析有一项技术跨越了SQL数据库、NoSQL数据库,非结构化数据、面向文档数据存储及大型处理。如果你猜到了Hadoop,那你回答正确。Hadoop也是许多巨头公司具有的一个共性,如亚马逊、雅虎、flix、eBay、微软、谷歌、Twitter和Facebook。IBM甚至是走在时常的前沿,促进Hadoop进行企业分析。此开源模型无处不在,它在这个舞台上停留的五年,是一个真的角色,我们不得不为此感到惊讶。
导读:架构大数据解决方案的软件工程师们都知道,业务分析有一项技术跨
hadoop,数据挖掘,解决方案 来自淘豆网m.daumloan.com转载请标明出处.