基于窗函数法设计的数字带通FIR滤波器
目录
目录 1
中文摘要 2
1 窗函数设计法原理 4
2 常见窗函数简介 7
基本窗函数 7
矩形窗函数 7
三角窗函数 7
巴特利特窗函数 8
广义余弦窗 9
汉宁窗函数 9
海明窗函数 10
布莱克曼窗函数 11
凯塞窗 11
切比雪夫窗 12
3 方案设计与论证 13
fdatool设计法 13
程序设计法 15
4 窗函数仿真结果分析 17
矩形窗函数仿真结果 17
18
巴特利特窗函数仿真结果 19
汉宁窗函数仿真结果 20
海明窗函数仿真结果 21
22
凯塞窗函数仿真结果 23
切比雪夫窗函数仿真结果 24
所有带通滤波器的比较 25
5 总结与体会 26
6参考文献 27
中文摘要
现代图像、语声、数据通信对线性相位的要求是普遍的。正是此原因,使得具有线性相位的FIR数字滤波器得到大力发展和广泛应用。
在实际进行数字信号处理时,往往需要把信号的观察时间限制在一定的时间间隔内,只需要选择一段时间信号对其进行分析。这样,取用有限个数据,即将信号数据截断的过程,就等于将信号进行加窗函数操作。而这样操作以后,常常会发生频谱分量从其正常频谱扩展开来的现象,即所谓的“频谱泄漏”。当进行离散傅立叶变换时,时域中的截断是必需的,因此泄漏效应也是离散傅立叶变换所固有的,必须进行抑制。而要对频谱泄漏进行抑制,可以通过窗函数加权抑制DFT的等效滤波器的振幅特性的副瓣,或用窗函数加权使有限长度的输入信号周期延拓后在边界上尽量减少不连续程度的方法实现。而在后面的FIR滤波器的设计中,为获得有限长单位取样响应,需要用窗函数截断无限长单位取样响应序列。另外,在功率谱估计中也要遇到窗函数加权问题。由此可见,窗函数加权技术在数字信号处理中的重要地位。
1 窗函数设计法原理
数字滤波器可以理解为是一个计算程序或算法,将代表输入信号的数字时间序列转化为代表输出信号的数字时间序列,并在转化过程中,使信号按预定的形式变化。数字滤波器有多种分类,根据数字滤波器冲激响应的时域特征,可将数字滤波器分为两种,即无限长冲激响应(iir)滤波器和有限长冲激响应(fir)滤波器。iir数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配。所以iir滤波器的设计可以采取在模拟滤波器设计的基础上进一步变换的方法。fir数字滤波器的单位脉冲响应是有限长序列。它的设计问题实质上是确定能满足所要求的转移序列或脉冲响应的常数问题,设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。
因此设计FIR滤波器的方法之一可以从时域出发,截取有限长的一段冲击响应作为H(z)的系数,冲击响应长度N就是系统函数H(z)的阶数。只要N足够长,截取的方法合理,总能满足频域的要求。一般这种时域设计、频域检验的方法要反复几个回合才能成功。要设计一个线性相位的FIR数字滤波器,首先要求理想频率响应。是w的周期函数,周期为,可以展开成傅氏级数:
= (公式1-1)
其中是与理想频响对应的理想单位抽样响应序列。但不能用来作为设计FIR DF用的h(n),因为一般都是无限长、非因果的,物理上无法实现。为了设计出频响类似于理想频响的滤波器,可以考虑用h(n)来近似。
窗函数的基本思想:先选取一个理想滤波器(它的单位抽样响应是非因果、无限长的),再截取(或加窗)它的单位抽样响应得到线性相位因果FIR滤波器。这种方法的重点是选择一个合适的窗函数和理想滤波器。
设x(n)是一个长序列,w(n)是长度为N的窗函数,用w(n)截断x(n),得到N点序列xn(n),即
xn(n) = x(n) w(n) (公式1-2)
在频域上则有
(公式1-3)
由此可见,窗函数w(n)不仅仅会影响原信号x(n)在时域上的波形,而且也会影响到频域内的形状。
MATLAB信号工具箱主要提供了以下几种窗函数,如表1-1所示:
表1-1 MATLAB窗函数
窗
窗函数
矩形窗
Boxcar
巴特利特窗
Barlett
三角窗
Triang
布莱克曼窗
Blackman
海明窗
Hamming
汉宁窗
Hanning
凯塞窗
Kaiser
切比雪夫窗
Chebwin
加矩形窗后的频谱和理想频谱可得到以下结论:
加窗使过渡带变宽,过渡带的带宽取决于窗谱的主瓣宽度。矩形窗情况下的过渡带宽是。N越大,过渡带越窄、越陡;
过渡带两旁产
基于窗函数法设计的数字带通FIR滤波器_课程设计 来自淘豆网m.daumloan.com转载请标明出处.