下载此文档

余弦定理教学设计.doc


文档分类:中学教育 | 页数:约10页 举报非法文档有奖
1/10
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/10 下载此文档
文档列表 文档介绍
余弦定理教学设计,高中余弦定理教学设计,余弦定理优秀教案,余弦定理学情分析,高中数学公开课视频,1.1.2余弦定理教案,高中数学余弦定理教案,高中余弦定理教学教案,等差数列教学设计,正弦定理优秀教案一、教学目标
认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形;
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。
二、教学重难点
重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。
难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。
三、学情分析和教学内容分析
在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。
四、教学过程
环节一【创设情境】
1、复习引入
让学生回答正弦定理的内容和能用这个定理解决哪些类型的问题。
A
B
C
图1
2、情景引入
如图1,某隧道施工队为了开凿一条山地隧道,需要测算隧道通过这座山的长度。工程技术人员先在地面上选一适当的位置A,量出A到山脚B、C的距离,再利用经纬仪测出A对山脚BC(即线段BC)的张角,最后通过计算求出山脚的长度BC。
学生不难将这个实际问题转化到数学问题:
已知三角形的两边和一个夹角,去求三角形的另外一边。这个问题是不能使用正弦定理来求解的。学生急切的希望应用新知识来解决这个问题。
环节二【导入新课】
问题:在△ABC中,当∠C=90°时,有c2=a2+,b边的长短不变,变换∠C的大小时,c2与a2+b2有什么大小关系呢?请同学们思考。
教师鼓励学生积极思考,大胆发言,启发学生解决问题,学生回答,借助于多媒体动画演示结果。
如图2,若∠C<90°时,由于AC与BC的长度不变,所以AB的长度变短,即c2<a2+b2.
C
B
A
B’
图2
A
C
B’
B
图3


如图3,若∠C>90°时,由于AC与BC的长度不变,所以AB的长度变长,即c2>a2+b2.
经过议论学生已得到当∠C≠90°时,c2≠a2+b2。
环节三【新课探究】
探究1、在上一个问题中,我们已经知道,当∠C≠90°时,c2≠a2+b2。那么c2与a2+b2到底有什么等量关系呢?请同学们继续探究。
教师引导学生分组合作学习,可让几个小组的学生研究当∠C为锐角时的结论,另外的小组研究当∠C为钝角时的结论。最后交流探索,展示成果。
如图4,当∠C为锐角时,作BD⊥AC于D,BD把△ABC分成两个直角三角形:

A

余弦定理教学设计 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数10
  • 收藏数0 收藏
  • 顶次数0
  • 上传人cjrl214
  • 文件大小275 KB
  • 时间2018-11-15
最近更新