A
B
C
D
E
第3题图
1、(2013陕西)如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小( )
A. 65° B. 55° ° D. 35°
考点:平行线的性质应用与互余的定义。
解析:此类题主要考查学生们的平面几何的性质应用的能力,
一般考查常见较为简单的两直线平行而同位角和内错角相等
的应用,而问题的设置也是求角度或者是找角的关系。
因为AB∥CD,所以∠D=∠BED,因为∠CED=90°,∠AEC=35°所以∠BED=180°-90°-35°=55°,此题故选B
2、(7-2平行线的性质与判定·2013东营中考)如图,已知AB∥CD,AD和BC相交于点O,∠A=,∠AOB=,则∠C等于( )
A. B. C. D.
:因为,,所以,因为AB∥CD,所以.
3、(2013年临沂)如图,已知AB∥CD,∠2=135°,则∠1的度数是
(A) 35°. (B) 45°. (C) 55°. (D) 65°.
答案:B
解析:因为∠2=135°,所以,∠2的邻补角为45°,又两直线平行,内错角相等,所以,∠1=45°
4、(2013•内江)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )
A.
125°
B.
120°
C.
140°
D.
130°
考点:
平行线的性质;直角三角形的性质.
分析:
根据矩形性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.
解答:
解:
∵EF∥GH,
∴∠FCD=∠2,
∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,
∴∠2=∠FCD=130°,
故选D.
点评:
本题考查了平行线性质,矩形性质,三角形外角性质的应用,关键是求出∠2=∠FCD和得出∠FCD=∠1+∠A.
5、(2013•温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是( )
A.
B.
8
C.
D.
14
考点:
平行线分线段成比例.
分析:
根据平行线分线段成比例定理列式进行计算即可得解.
解答:
解:∵DE∥BC,
∴=,
即=,
解得EC=8.
故选B.
点评:
本题考查了平行线分线段成比例定理,找准对应关系是解题的关键.
6、(2013•雅安)如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为( )
A.
50°
B.
60°
C.
70°
D.
100°
考点:
平行线的性质;角平分线的定义.
分析:
根据角平分线的定义可得∠BAD=∠CAD,再根据两直线平行,内错角相等可得∠BAD=∠D,从而得到∠CAD=∠D,再利用三角形的内角和定理列式计算即可得解.
解答:
解:∵AD平分∠BAC,
∴∠BAD=∠CAD,
∵AB∥CD,
∴∠BAD=∠D,
∴∠CAD=∠D,
在△ACD中,∠C+∠D+∠CAD=180°,
∴80°+∠D+∠D=180°,
解得∠D=50°.
故选A.
点评:
本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图是解题的关键.
7、(2013泰安)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于( )
° ° ° °
考点:平行线的性质.
分析:根据两直线平行,同旁内角互补求出∠B+∠C=180°,°,再根据多边形的外角和定理列式计算即可得解.
解答:解:∵AB∥CD,
∴∠B+∠C=180°,
∴∠4+∠5=180°,
根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,
∴∠1+∠2+∠3=360°﹣180°=180°.
故选B.
点评:本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.
8、(2013•莱芜)如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )
A.
10°
B.
20°
C.
25°
D.
30°
考点:
平行线的性质.
分析:
延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.
解答:
解:如图,延长AB交CF于E,
∵∠ACB=90°,∠A=30°,
∴∠ABC=60°,
(试题 试卷 真题)平行线 来自淘豆网m.daumloan.com转载请标明出处.