学习目标
1、在自主探索、合作交流中经历梯形面积公式的推导过程,掌握梯形面积的计算方法,并能灵活运用公式解决相关的数学问题。
2、通过猜想、验证、实践等数学活动,发展空间观念和推理能力,获得解决问题的多种策略,感受数学方法的内在魅力。
3、通过探索活动,激发学习兴趣、培养严谨、科学的学习态度、勇于探索、乐于合作的精神,并感受数学与生活的密切联系,更体验数学“再创造”的乐趣,获得个性化的发展。
学习重点
探索并掌握梯形的面积公式,能正确计算梯形的面积
学习难点
让学生利用已有知识和学习方法自主探究,发现并掌握梯形的面积计算方法。
学习过程
?他们的面积怎样计算?
?
、三角形的面积是怎样推导出来的?
(根据学生所述,教师电脑演示平行四边形和三角形面积公式的推导过程)
推导平行四边形和三角形面积公式时,我们都用到了转化的方法,把我们要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式。这真是一种不错的方法。
[设计意图]采用多媒体演示,直观地再现平行四边形和三角形面积公式的推导过程,不但吸引学生的注意力。还唤起学生的回忆,使新旧知识的联系得到了沟通,为新知迁移做好准备。
二、设置情境,激发“猜想”
设置情境,导入“新课”。
。(电脑演示)老师给大家带来许多生活中优美的梯形,请欣赏
[设计意图]教学知识与学生生活实际相联系,使学生容易感受、体验到数学知识的实际意义及其用处。因此,从学生的生活经验出发,设置实际情境呈现梯形,让学生感受计算梯形面积的必要性。
师;在我们的生活中有很多这样的梯形需要我们计算它们的面积,但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?
师:同学们都有了推导公式的初步想法,不管你转化成什么图形,总的思路都是把梯形转化成我们学过的图形,找到图形间的联系,推导出梯形的面积公式。任何猜想都要经过验证,才能确定是否正确。那你想不想马上动手试一试呢?
[设计意图] “猜想——验证”的过程也是学生主动参与教学知识探索的过程。启发学生运用已有的知识,大胆提出猜测,激发学生探究新知识的欲望,又使学生明确了探究的目标与方向,同时明白猜想是否正确还需用科学方法进行验证。这样不但体现了学生的主体地位,还让学生真正经历知识的形成过程。
三、实验操作,探究验证。
。老师给大家准备了一些学具,也许会对你们的验证有所帮助。
拿出你的学具袋,告诉老师,你的学具袋里有什么?你说,你说,你说(哦,大家的学具还不一样呢?有的是两个完全相同直角梯形,有的是两个等腰梯形,有的只有一个等腰梯形, 想一想,用这些梯形能完成验证任务吗?如果不能,该怎么办?
[设计意图]为学生准备一组这样的学具,是要激发起学生学习的积极性,激活学生已有的生活经验储备,点燃创新思维的火花。实际上只凭学生自己手中的梯形是完成不了拼组的,这就需要学生与别的同学进行合作才能完成任务。进而培养学生的合作意识。
师:在你们动手操作之前,老师要提出这样三点建议:(1)选择你们喜欢的梯形,先独立思考能把它转化成已学过的什么图形,再按照“
梯形的面积教案 来自淘豆网m.daumloan.com转载请标明出处.