下载此文档

一元三次方程的解法.doc


文档分类:高等教育 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
——一元三次方程获解
公元1535年2月22日,威尼斯的一所大教堂里公开进行着一场数学竞赛,参加竞赛的一方是意大利波伦亚大学教授费罗的学生菲奥尔,另一方是N·丰塔纳。
引起这场竞赛的原因是解一元三次方程。
竞赛的内容是双方各出30道一元三次方程给对方,同时开始解答,谁解得多、快,解得准确,谁就获胜。
在二十世纪以前,代数方程求解问题可以说一直是代数学的中心问题。所谓代数方程,指的是多项式方程,即形如
anxn+an-1xn-1+…+a1x+a0=0
的方程,其中最简单的是一次方程,这类方程很容易求解。其次是一元二次方程,二次方程的求解问题有久远的历史,巴比伦泥板中就载有二次方程问题;古希腊人和中国《九章算术》都解出过某些二次方程;中国赵爽在解一个有关面积的问题时,相当于得出了二次方程-x2+kx=A的一个根x=(k-);七世纪印度人婆罗摩笈多给出求方程x2+px-q=0的一个根的公式x=(-p);一元二次方程的一般解法在九世纪时,就由阿拉伯数学家花拉子模求出来了。
对一元三次方程的研究自古有之。在巴比伦泥板中就有相当于求解三次方程的问题;阿基米德讨论过方程x3+a=cx2的几何解法;七世纪中国王孝通在自己的著作《缉古算经》中提出了要用三次方程解的问题,列出三次方程并给出三次方程的一个正解,但没有方程的列法也没有方程的具体的解法;十三世纪,中国秦九韶进一步提出代数方程的数值解法;公元十一世纪波斯人奥马·海亚姆创造了奇迹:用几何作图的方法,求出了三次方程x3-cx2+b2x+a=0的根。但在其后的500多年里,人们虽然作了努力,却对一般的一元三次方程一筹莫展,数学家们对此似乎已经丧失了信心。1494年,意大利帕乔利在其一部著作中甚至指出,若干三次和四次方程的求解象化圆为方问题一样困难,并推测它们可能不存在一般解法。直到十六世纪,在一批意大利数学家的努力之下,才找到了一元三次方程的一般解法,其中贡献最大的就是N·丰塔纳。
在求解一元三次方程的努力中,最先有所突破的是意大利波伦亚大学的费罗,他发现了缺二次项的三次方程x3+px=q的解法,他将解法秘传给学生菲奥尔。
N·丰塔纳是意大利布雷西亚人,生于一个贫困的邮差家庭,早年丧父,又遭战乱之祸,头部被乱刀砍伤,幸而治愈,但留下口吃的毛病,人们因而称之为塔尔塔利亚(口吃者)。他本人也以此为姓发表著述,其本姓反而不用,人们对他原来的姓氏却不太清楚了。
丰塔纳最主要的数学成就,就是求出一元三次方程的一般解法,但在他的著述中却找不到这一解法,仅在别人的著作中载有这一解法的片断。不过在丰塔纳的著作《各种问题和发明》中,却对发现这一解法的过程及围绕它产生的争论都作了详细的描述。
十六世纪的欧洲盛行这样一种数学竞赛:某甲因为认为某乙数学水平高,向其学习,或对其不服,想压倒他等等原因,就会向某乙提出挑战,如果某乙应战,就约好日期,公开举行竞赛。丰塔纳和费罗发现了有关三次方程的解法都没有公开发表,其原因是当时的学术氛围促成对成果保密,以求在公开的数学竞赛中击败对手。1530年前后,丰塔纳求出了缺一次项的一元三次方程x3+mx2=n的一般解法,得出正实根,也没有发表。几年后,菲奥尔听说丰塔纳也会解一元三次方程,就向他挑战,丰塔纳接受挑战,并在公开竞赛前找出缺二次项的三次方程的解法。这样,他既和菲奥尔一样会

一元三次方程的解法 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数6
  • 收藏数0 收藏
  • 顶次数0
  • 上传人zbfc1172
  • 文件大小107 KB
  • 时间2019-01-09