下载此文档

白手起家精典案例.doc


文档分类:生活休闲 | 页数:约7页 举报非法文档有奖
1/7
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/7 下载此文档
文档列表 文档介绍
初三数学(第4讲)一、本讲内容第22章一元二次方程§§、:(1)注意一元二次方程定义中的三个条件:有一个未知数,含未知数的最高次是2,整式方程,是判断一个方程是否是一元二次方程的依据。(2)强调:要先把一元二次方程化为一般形式ax2+bx+c=0(a≠0),才能确定a、b、c的值。:熟练地解一元一次方程和一元二次方程是学好其他方程的关键,一元二次方程的解法是本章的重点。一元二次方程的基本解法有四种:(1)直接开平方法:(2)配方法:(3)公式法:用配方法推导求根公式,由此产生了第三种解法公式法,它是解一元二次方程的主要方法,是解一元二次方程的通法。(4)因式分解法:适用于方程左边易于分解,而右边是零的方程。我们在解一元二次方程时,要注意根据方程的特点,选择适当的解法,使解题过程简捷些。一般先考虑直接开平方法,再考虑因式分解法,最后考虑公式法。对于二次项系数含有字母系数的方程,要注意分类讨论。:一元二次方程ax2+bx+c=0(a≠0)根的判别式△=b2-4ac的意义,在于不解方程可以判别根的情况,还可以根据根的情况确定未知系数的取值范围。:一元二次方程的两根和与两根积和系数的关系在以下几个方面有着广泛的应用:(1)已知方程的一根,求另一个根和待定系数的值。(2)不解方程,求某些代数式的值。(3)已知两个数,求作以这两个数为根的一元二次方程。(4)已知两数和与积,求这两个数。(5)二次三项式的因式分解。……运用根与系数的关系,可以大大缩减了复杂的运算量,避免进行无理数的计算。:在实数范围内分解二次三项式ax2+bx+c(a≠0),可先用求根公式求出方程ax2+bx+c=0的两个根x1、x2,然后写成ax2+bx+c=a(x-x1)(x-x2)。当a≠1时,分解时注意不要忘了a。:解分式方程的常用方法是去分母,换元法转化为整式方程求解。解分式方程时,一定要注意验根,验根后要写结论。三、?分析:(3)、(5)是一元二次方程。(1)中x的最高次是3次,(2)是分式方程,(4)中二次项系数a不能确定是否为零,所以不一定是一元二次方程,(6)有两个未知数x、y,(7)式去括号移项合并同类项后是一元一次方程。:解:也可以利用公式法解。。解:注意:题目中的隐含条件是二次项的系数m≠0。:(6)由根的定义代进去,构成关于根的方程再降次。:应选C。设x0是两个方程的公共根例6.(1)求证:无论k取任何实数值,方程总有实数根。(2)若等腰三角形的一边长为1,另两边长恰是这个方程的两个根,求三角形的周长。解:∴无论k取任何实数值,方程总有实数根(2)∵等腰三角形的一边长为1∴要分类讨论则底边为2三边为1,1,2,不符合三角形两边之和大于第三边,舍去。②当底边为1时,则两个腰为方程的两个根,即方程有两个相等的根三边为2,2,1,符合三角形三边关系定理。∴:即方程的两个根x、:、

白手起家精典案例 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数7
  • 收藏数0 收藏
  • 顶次数0
  • 上传人镜花水月
  • 文件大小376 KB
  • 时间2019-02-05
最近更新