下载此文档

湖北省黄冈中学2011年高考压轴题精选2(数学).doc


文档分类:中学教育 | 页数:约8页 举报非法文档有奖
1/8
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/8 下载此文档
文档列表 文档介绍
2011年黄冈中学高考数学压轴题精选2
6、设、分别是椭圆的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;
(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.

7、已知动圆过定点P(1,0),且与定直线L:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.
8、定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),
求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;
(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。
9、已知二次函数满足,且关于的方程的两实数根分别在区间(-3,-2),(0,1)内。
(1)求实数的取值范围;
(2)若函数在区间(-1-,1-)上具有单调性,求实数C的取值范围
10、已知函数且任意的、都有
(1)若数列
(2)求的值.
解答
6、解:(Ⅰ)易知
设P(x,y),则

,
,即点P为椭圆短轴端点时,有最小值3;
当,即点P为椭圆长轴端点时,有最大值4
(Ⅱ)假设存在满足条件的直线l易知点A(5,0)在椭圆的外部,当直线l的斜率不存在时,直线l与椭圆无交点,所在直线l斜率存在,设为k
直线l的方程为
由方程组
依题意
当时,设交点C,CD的中点为R,

又|F2C|=|F2D|

∴20k2=20k2-4,而20k2=20k2-4不成立, 所以不存在直线,使得|F2C|=|F2D|
综上所述,不存在直线l,使得|F2C|=|F2D|
7、解:(1)依题意,曲线M是以点P为焦点,直线l为准线的抛物线,所以曲线M的方程为y2=4x.
假设存在点C(-1,y),使△ABC为正三角形,则|BC|=|AB|且|AC|=|AB|,即

因此,直线l上不存在点C,使得△ABC是正三角形.
(ii)解法一:设C(-1,y)使△ABC成钝角三角形,
,
,
∠CAB为钝角.
.
该不等式无解,所以∠ACB不可能为钝角.
因此,当△ABC为钝角三角形时,点C的纵坐标y的取值范围是:
.
解法二: 以AB为直径的圆的方程为:
.
当直线l上的C点与G重合时,∠ACB为直角,当C与G 点不重合,且A,
B,C三点不共线时, ∠ACB为锐角,即△ABC中∠ACB不可能是钝角.
因此,要使△ABC为钝角三角形,只可能是∠CAB或∠CBA为钝角.

湖北省黄冈中学2011年高考压轴题精选2(数学) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数8
  • 收藏数0 收藏
  • 顶次数0
  • 上传人追风少年
  • 文件大小0 KB
  • 时间2011-09-24