下载此文档

高考数学公开课——祖暅原理.ppt


文档分类:中学教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
gèng祖暅祖暅,又名祖暅之,是祖冲之的儿子,他的活动期大约在504-526年。祖氏父子在数学和天文学上都有杰出的贡献。祖暅主要是修补编辑了祖冲之的《缀术》。他十分巧妙的推导了球的体积公式。祖暅原理的原文是“幂势既同,则积不容异”,“幂”即面积,“势”即高。意思是:两个等高的几何体,如果与底面等距离的截面面积总相等。那么这两个几何体的体积相等。西方把这个原理叫做“卡发雷利原理”,是在他于1635年所出版的《连续不可分几何》中所提出的。1刘徽刘徽首先证明了《九章算术》中的球体积公式是不正确的,并在《九章算术》“开立圆术”注文中指出了一条推算球体积公式的正确途径。刘徽创造了一个新的立体图形,他称之为“牟合方盖”,并指出:一旦算出牟合方盖的体积,球体积公式也就唾手可得。在一立方体内作两个互相垂直的内切圆柱。这两个圆柱体相交的部分,就是刘徽所说的“牟合方盖”。牟合方盖恰好把立方体的内切球包含在内并且同它相切。如果用同一个水平面去截它们,就得到一个圆(球的截面),和它的外切正方形(牟合方盖的截面)。中国数学史刘徽虽然没有推证出球体积公式,但他所创用的特殊形式的不可分量方法,成为后来祖冲之父子在球体积问题上取得突破的先导。牟合方盖祖冲之(公元429-500)刘徽(生于公元250左右)中国数学史祖冲之(公元429-500,如图)活跃于南朝宋、齐两代,出生于历法世家,本人做过南徐州(今镇江)从事史和公府参军,都是地位不高的小官,但他却成为历代为数很少能名列正史的数学家之一。祖冲之在公元462年创制了一部历法《大明历》,,祖冲之算出了圆周率数值的上下限:“祖冲之更开密法,以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,肭数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈肭二限之间”。祖冲之关于圆周率的贡献记载在《隋书》中,《隋书﹒律历志》说:字景烁,又名祖暅之,是祖冲之的儿子,自小对数学有浓厚的兴趣,经常与父亲一起钻研数学问题。祖氏父子在数学和天文学上都有杰出的贡献。祖暅修补、编辑了祖冲之的《缀术》。他运用祖暅原理十分巧妙的推导了球的体积公式。他在数学上的成就,除了父亲对他的影响,和他自己后天的努力是分不开的。祖暅原理的原文是“幂势既同,则积不容异”,“幂”即面积,“势”即高。意思是:两个等高的几何体,如果与底面等距离的截面面积总相等。那么这两个几何体的体积相等。“祖暅原理”在17世纪由意大利数学家卡瓦列里重新发现,但比祖暅晚一千余年。祖暅公元五世纪末祖暅原理:大约公元五世纪,我国古代数学家祖暅在实践的基础上,总结出一个重要的体积计算原理:夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。解释棱柱、圆柱的截面有什么性质?一、棱柱、圆柱的体积设棱柱与圆柱的底面积都为S、高都为h,根据祖暅原理,那么它们的体积相等,但等于多少呢?为此还必须引进一个底面积为S、高为h的长方体,而这样的长方体、棱柱、、棱锥、圆锥的体积一、棱柱、圆柱的体积图1用祖暅原理证明球体积公式三、球的体积

高考数学公开课——祖暅原理 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人350678539
  • 文件大小639 KB
  • 时间2019-02-24