目录第一章引言................................................................1第二章算法理论与实现原理.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................4第三章系统设计...............................................................................................................................................................8第四章参考文献.......................................................12第五章心得体会.......................................................12第一章引言近年来,随着人工智能的快速发展,人脸识别技术逐渐成为模式识别与计算机视觉领域的一个研究热点,可用于身份认证、人员监视、图像数据库检索以及目标跟踪等场合。人脸识别(FaceRecognition)是将输入的人脸图像与系统已知人脸库中的模型进行比较,以确定是否存在相匹配的人脸,而人脸检测(FaceDetection)是指在输入图像中确定所存在的人脸的位置与大小,所以快速有效的人脸检测则显得至关重要,是实现人脸识别的前提和基础。人脸检测系统要求实现对输入的可能包含人脸的图像进行处理,并输出图像中是否存在人脸以及人脸的数目、位置、尺度、位姿等参数信息。传统的人脸检测方法大多是在亮度空间内进行,利用灰度的变化做多尺度空间的全搜索,计算量非常大、效率极低,而在人脸区域中,肤色一定是占主导地位的像素色彩值,虽然肤色因人而异,但经过研究可以发现肤色在色彩空间中的一定范围内是呈聚类特性的,特别是在排除了光照亮度和在经过变换的色彩空间中,利用肤色这一特征可以排除掉在灰度图像中的非皮肤区域,这对人脸检测起到了积极的作用。,而肤色模型的选取与色度空间(chrominancespace)的选择密切相关。人脸检测常用的色度空间主要RGB(红、绿、蓝三基色)、rgb(亮度归一化的三基色)、HSI(色调、饱和度、亮度)、YIQ(NTSC制的光亮度和色度模型)、YUV(PAL制的光亮度和色度模型)、IR601)编码方式的色度模型、CIEL(国际照明委员会提出的基于色度学的彩色模型)等。另外,用肤色模型对肤色进行分割分为两个阶段:模型建立与模型运用。模型的建立主要是通过对大量肤色像素集进行统计分析,然后确定模型中的参数;对于模型的运用,主要是通过已建立的肤色模型来判别所输入的像素或区域是否为肤色,或者给出其与肤色的相似程度。不论在什么样的色彩空间中,肤色模型大体上分为四种:区域模型或IF-THEN模型、简单高斯模型、混合高斯模型和直方图模型。-THEN模型、简单门限模型,它主要是利用了肤色在色彩空间的聚类性(即取值范围),将一块满足一定条件的区域标定为肤色区域。采用这个模型来判别肤色需要分两步走:首先通
基于matlab的彩色图像皮肤区域分割及人脸检测 来自淘豆网m.daumloan.com转载请标明出处.