《排列组合应用题的解法》排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。下面通过一些例题来说明几种常见的解法。(位置)《排列、组合、二项式定理•解题技巧》排列组合问题是高考必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,备考有效方法是题型与解法归类、识别模式、熟练运用,.“至少”,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。下面通过一些例题来说明几种常见的解法。,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。例1:n个人参加某项资格考试,能否通过,有多少种可能的结果?解法1:用分类记数的原理,没有人通过,有种结果;1个人通过,有种结果,……;n个人通过,有种结果。所以一共有种可能的结果。解法2:用分步记数的原理。第一个人有通过与不通过两种可能,第二个人也是这样,……,第n个人也是这样。所以一共有种可能的结果。例2:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有()(A)6种(B)9种(C)11种(D)23种解:设四个人分别为甲、乙、丙、丁,各自写的贺年卡分别为a、b、c、d。第一步,甲取其中一张,有3种等同的方式;第二步,假设甲取b,则乙的取法可分两类:(1)乙取a,则接下来丙、丁的取法都是唯一的,(2)乙取c或d(2种方式),不管哪一种情况,接下来丙、丁的取法也都是唯一的。根据加法原理和乘法原理,一共有种分配方式。(位置)优先例3:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个?解:个位选0,有个,个位不选0且万位不能选0,有个,所以一共可以得到个偶数。注0,2,4,6,8是特殊元素,元素0更为特殊,首位与末位是特殊的位置。例4:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?解:先排甲,有种排法。再排乙,有种排法,再排其余的人,又有种排法,所以一共有种排法。:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法?解:把甲、乙、丙先排好,有种排法,把这三个人“捆绑”在一起看成是一个,与其余5个人相当于6个人排成一排,有种排法,所以一共有=1440种排法。:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法?解:先排5个不是小品的节目,有种排法,它们之间以及最后一个节目之后一共有6个空隙,将3个小品插入进去,有种排法,所以一共有=7200种排法。注:捆绑法与插入法一般适用于有如上述限制条件的排列问题。
排列组合应用题的解法 来自淘豆网m.daumloan.com转载请标明出处.