钟表上的追及问题例如:在3点和4点之间的哪个时刻,钟表的时针与分针:(1)重合;(2)成平角;(3)成直角。解析:分针旋转的速度快,时针旋转的速度慢,而旋转的方向却是一致的。因此上面这类问题也可看做追及问题。通常有以下两种解法:“分格”,时针1小时走5个分格,所以时针一分钟转分格,分针一分钟转1个分格。因此可以利用时针与分针旋转的“分格”数来解决这个问题。解析(1)设3点x分时,时针与分针重合。则分针走x个分格,时针走个分格。因为在3点这一时刻,时针在分针前15分格处,所以当分针与时针在3点与4点之间重合时,分针比时针多走15个分格,于是得方程,解得。所以3点16分时,时针与分针重合。(2)设3点x分时,时针与分针成平角。因为在3点这一时刻,时针在分针前15分格处,而在3点到4点之间,时针与分针成一平角时,分针在时针前30分格处,此时分针比时针多走了45分格,于是得方程,解得。所以3点分时,时针与分针成平角。(3)设3点x分时,时针与分针成直角。此时分针在时针前15分格处,所以在3点到4点之间,时针与分针成直角时,分针比时针多走了30分格,于是得方程,解得。所以3点分时,时针与分针成直角。,时针12小时旋转一圈,分针1小时旋转一圈,转过的角度都是360°,°,分针1分钟转过的角度是6°。故也可以利用时针与分针转过的度数来解决这道题。解析(1)设3点x分时,时针与分针重合,°,分针旋转的角度是6x°。整3点时,时针与分针的夹角是90°,当两针重合时,分针比时针多转了90°,于是得方程,解得。(2)设3点x分时,时针与分针成平角。此时分针比时针多转了90°+180°=270°,于是得方程,解得。(3)设3点x分时,时针与分针成直角。此时分针比时针多转了,于是得方程,解得。,什么时刻时针与分针重合?,什么时刻时针与分针互相垂直?,什么时刻时针与分针成40°的角?,什么时刻时针与分针成一直线?,什么时刻时针与分针重合?,什么时刻时针与分针互相垂直?
钟表上的追及问题 (2) 来自淘豆网m.daumloan.com转载请标明出处.