肆离散数学的学习体会及趣味所在芁膁学习了一学期的离散数学了,刚学的时候就觉得它挺有意思的,可以对一些实际问题进行描述后便可证明,实际应用性很强。譬如书上的第三章里的一道习题,要我们用自然推理系统证明一个人是否为嫌疑犯的问题,当时就觉得挺有意思的,感觉像个侦探,运用理性思维破案一样,要知道,我是一个福尔摩斯迷。后来,学习更多之后,逐渐了解到它在我以后学习生涯中的重大用处,它作为计算机科学学科中的一门重要的基础课,通过学习离散数学,不仅能为以后计算机专业后续课程奠定理论基础,而且能培养抽象思维能力、严格的逻辑推理和创新能力,为将来从事的软、硬件应用开发和理论研究打下坚实的基础。羇作为一门专业课,以后的数据结构和算法都以之为基础,尤其是开始学的集合论、关系和后来学的图论和树在数据结构中的大量应用。我们都知道,计算机要解决一个问题,必须运用数据结构的知识。对于问题中所处理的数据,必须首先从具体问题中抽象处一个适当的数学模型,然后设计一个解此数学模型的算法,最后编出程序,进行测试,调整知道得到问题最终的解答。而寻求数学模型就是数据结构研究的问题。寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间含有的关系,然后用数学的语言加以描述。数据结构中的逻辑结构和基本运算操作就是源于离散数学中离散结构和算法思考。离散中的集合论、关系、图论、树等内容反映了出数据结构中的四大结构的认识。只有学好离散,才能继续学习以后的相继课程。节在这学期的学习过程中,我发觉学习离散需要很强的逻辑性,和抽象能力,有时候那里面一些显而易见,一看就懂的东西,它却要你证明。有时很头疼,但是经过锻炼之后感觉自己的逻辑思考能力的却加强了。离散数学里面的一些经典悖论也是挺有意思的。羃罿一、理发师悖论肇在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。蚃这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。有言在先,他应该给自己理发。莁反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。蚈因此,无论这个理发师怎么回答,都不能排除内在的矛盾。这个悖论是罗素在1902年提出来的,所以又叫“罗素悖论”。这是集合论悖论的通俗的、有故事情节的表述。显然,这里也存在着一个不可排除的“自指”问题。肇肄二、苏格拉底悖论膃有“西方孔子”之称的雅典人苏格拉底是古希腊的大哲学家,曾经与普洛特哥拉斯、哥吉斯等著名诡辩家相对。他建立“定义”以对付诡辩派混淆的修辞,从而勘落了百家的杂说。但是他的道德观念不为希腊人所容,竟在七十岁的时候被当作诡辩杂说的代表。在普洛特哥拉斯被驱逐、书被焚十二年以后,苏格拉底也被处以死刑,但是他的学说得到了柏拉图和亚里斯多德的继承。螁苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。”这是一个悖论,我们无法从这句话中推论出苏格拉底是否对这件事本身也不知道。膆蒅三、集合论悖论薁“R是所有不包含自身的集合的集合。”蒀人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R。如果R包含自身的话,R又不属于R。芆继罗素的集合论悖论发现了数学基础有问题以后,1931年歌德尔提出了一个“不完全定理”,打破了十九世纪末数学家“所有的数学体
离散数学课程论文 来自淘豆网m.daumloan.com转载请标明出处.