羅海岸线与分形蒂(刘婷数学科学学院06205006)袈我们生活的世界里充满了分形,喧闹的都市生活、美轮美奂的自然风光、复杂的生命现象、蜿蜒曲折的海岸线,坑坑洼洼的地面等都到处有分形的影子。电话卡、头巾、书签、包装材料的图案也表现了丰富的现象(如图1)。那么到底是什么导致分形几何的产生?分形几何又与我们平时学习的几何有什么不同呢?我们试图给出问题的答案。蚈肃图1袁一、经典几何的特点蕿两千多年来,古希腊人创立的几何学,一直是人们认识自然物体形状的有力工具。经典几何学所描绘的都是由直线或曲线、平面或曲面、平直体或曲体所构成的各种几何形状,它们是现实世界中物体形状的高度抽象。天文学家们用这种几何知识构造了多种宇宙理论,建筑师们利用它设计出大量宏伟的建筑;以致于近代物理学的奠基者、伟大的科学家伽利略极其权威地断言:大自然的语言是数学,“它的标志是三角形、圆和其他几何图形”。在欧氏空间中,人们面或球面看成二维,而把直线或曲线看成一维。也可以稍加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。虿自然界的现象通常都发生在某种特征标度上,如特征长度、特征时间等特征尺度上。科学家关于事物特征的描述最基本的莫过于问它有多大,持续多久。这都是依赖于标度(尺度)的一些基本性质。每种事物都有其特征尺度,例如天体物理学家描写的宇宙结构,大约在数百万光年的范围上;生物学家认识的微生物的结构大约有微米的长度;物理学家研究的夸克,约在10-13厘米的数量级上。每一个具体事物,都与特定的尺度相联系。几厘米长的昆虫与几米、十几米大小的巨兽在形态、结构上必然极不相同,否则它们就无法生存和繁衍。《楚辞·卜居》中说:“夫尺有所短,寸有所长”。这也是说事物都有其自己的特征尺度,要用适宜的尺去测度。用寸来量度细菌,用尺来量度万里长城,前者失之过长,后者又嫌太短。所以,标度是十分重要的。试图对自然现象做定量描写时,就必须从特征尺度入手。一个好的理论模型,往往要涉及三个层次:首先是由特征尺度确定的基本层次;更大尺度的环境就用“平均场”和决定外力的“位势”等描写;更小尺度上的相互作用,则以“摩擦系数”、“扩散系数”等得自于实验的“常数”来表征。如果要从理论上对这些系数做出阐明和推算,那就必须从物质运动的更深入细微的层次上进行探讨。莆传统几何学的功能并不是那么大的,它所描述的只是那些具有光滑性即可微性(可切性),至少是分段分片光滑的规则形体。这类形体在自然界里只占极少数。自然界里普遍存在的几何形体大多数是不规则的、不光滑的、不可微的,甚至是不连续的。如蜿蜒起伏的山脉,曲折凸凹的海岸线,坑坑洼洼的地面,枝干纵横的树枝,团块交叠的浮云,孔穴交错的蛋糕……真是奇形怪状,千姿百态。这些形状和经典几何学所描述的形状,真是大相径庭。对于了解自然界的复杂性来讲,欧几里得几何学是一种不充分、不具有普遍性的抽象。芀二、分形几何产生的前奏艿二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中讨论英国海岸线的长度。他发现,关于“某一段海岸线有多长”这一问题,初看起来,似乎是一个很简单的问题,但要明确回答,
分形之海岸线 来自淘豆网m.daumloan.com转载请标明出处.