论文题目:最佳捕鱼方案
摘要
在充分理解题意的基础上,我们提出了合理的假设。通过对问题的深入分析和对草鱼损失率的不同理解,我们建立了三个模型。
模型一中,损失率是基于水库草鱼的总量,草鱼的损失是一些定值的累加。在这种情况下,我们进行了粗略的估算,在日供应量方面,我们让每日草鱼的供应量达到售价方面的临界值。提出了四个可行的方案。通过比较认为方案四·能使总利润达到最大值404636元,共损失草鱼量为2625kg,当且仅当第1天至第15天,日供应量为1000kg,单价为25元,第16天至19天,日供应量为1500kg,单价为20元。第20天售出1375kg,单价为20元。
在模型二、三中,为了更接近现实生活中的情况及人们的认知观,我们对第n天草鱼的损失率的理解是基于第n-1天剩下的草鱼而言。模型二,不考虑日供应量在1500kg以上的情况,运用LINGO解出的结果为总利润的最大值为元,。第1天到第14天及第16天,每天售出草鱼1000kg,,其余每天售出500kg。
模型三在模型二的基础上做了一些改进(如考虑日供应量在1500kg以上的情况),建立了多目标的规划模型,求得总利润的最大值为332875元,。第2天到第5天及第11天到16天,每天售出1000kg,其余每天售出500kg。
关键词: 0-1变量规划问题多目标 LINGO
一、问题重述
该问题阐述的是一个水库的经营商为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库的杂鱼做一次彻底清理。因此经营商打算放水清库,同时为使捕捞鲜活草鱼投放市场时,获得最佳效益。现有如下条件:(1)水库现有水位平均为15米,,水库水位最低降至5米。(2)据估计水库内尚有草鱼25000余公斤。(3)若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500—1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤,已处于饱和。(4)关于放水清库的过程的成本计算大致如下:捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%。
二、问题分析
通过简单的分析和思考,我们可以将获得最佳效益视为求解最优值的问题,即该问题可以归为一个数学规划问题。条件(1)(2)是针对目前状况的约束,条件(3)是通过卖鱼可以获得的利润,条件(4)是对成本的约束。在四个条件约束的情况下,我们可以建立模型。由于对损失率的理解不同,我们进行了不同的假设,并在这些假设下建立了模型一和模型二、三。模型一中,损失率是基于水库草鱼的总量,草鱼的损失是一些定值的累加。而在模型二、三中,为了更接近现实生活中的情况及人们的认知观,我们对第n天草鱼的损失率的理解是基于第n-1天剩下的草鱼而言。模型二将不考虑日供应量超过1500kg的情况,而模型三考虑。模型三的建立采用多目标的规划方法进行求解。
三、条件假设
1、在整个售鱼的过程中,顾客都只到该经营商处购鱼。
2、水位的变化除了每天的自然放水,不考虑蒸发等其他的情况。
3、每日售出的草鱼数量即为当天捕捞的
最佳捕鱼方案 来自淘豆网m.daumloan.com转载请标明出处.