下载此文档

职高数学概念公式(最全).doc


文档分类:高等教育 | 页数:约36页 举报非法文档有奖
1/36
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/36 下载此文档
文档列表 文档介绍
膄职高数学概念与公式肂预备知识:(必会)蚀相反数、绝对值、分数的运算薆因式分解薆十字相乘法如:蒁两根法如:蒀配方法如:蚇分数(分式)的运算蚅一元一次方程、一元二次方程、(差)公式::(差)公式::所有的公式中凡含有“”的,注意把公式反过来运用。袁集合蝿构成集合的元素必须满足三要素:确定性、互异性、无序性。蒇集合的三种表示方法:列举法、描述法、图像法(文氏图)。芃注:描述法;另重点类型如:羀常用数集:(自然数集)、(整数集)、(有理数集)、(实数集)、(正整数集)、(正整数集)膈元素与集合、集合与集合之间的关系:膇元素与集合是“”与“”的关系。莅集合与集合是“”“”“”“”的关系。莂注:(1)空集是任何集合的子集,任何非空集合的真子集。(做题时多考虑是否满足题意)薈(2)一个集合含有个元素,则它的子集有个,真子集有个,非空真子集有个。袈集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法)膂(1):与的公共元素(相同元素)组成的集合蒀(2):与的所有元素组成的集合(相同元素只写一次)。肇(3):中元素去掉中元素剩下的元素组成的集合。莄注:膃会用文氏图表示相应的集合,会将相应的集合画在文氏图上。蕿命题:能判断真假的语句。蒆逻辑联结词:膄且()、或()非()如果……那么……()芅量词:存在()任意()羁真值表:膀:其中一个为假则为假,全部为真才为真;袅:其中一个为真则为真,全部为假才为假;肂:与的真假相反。肀(同为真时“且”为真,同为假时“或”为假,真的“非”为假,假的“非”为真;真“推”假为假,假“推”真假均为真。)蕿命题的非蚅(1)是不是膃都是不都是(至少有一个不是)蒂(2)……,使得成立对于……,都有成立。罿对于……,都有成立……,使得成立莆(3)膅充分必要条件薀是的……条件是条件,是结论蒈(充分条件)肆(必要条件)羂(充要条件)羃袇注:另外一种情况,的条件是。(是条件,是结论)袆不等式肄不等式的基本性质:(略)肁注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法如:(倒数法)等。芇(2)不等式两边同时乘以负数要变号!!薇(3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。肅重要的不等式:(均值定理)腿(1),当且仅当时,等号成立。羀(2),当且仅当时,等号成立。莇(3),当且仅当时,等号成立。袂注:(算术平均数)(几何平均数)薂一元一次不等式的解法(略)莀一元二次不等式的解法肇保证二次项系数为正羄分解因式(十字相乘法、提取公因式、求根公式法),目的是求根:蚀定解:(口诀)大于两根之外,大于大的,小于小的;衿小于两根之间薄注:若,用配方的方法确定不等式的解集。肅绝对值不等式的解法肃若,则芈分式不等式的解法:与二次不等式的解法相同。注::穿根法。螂标根后,从右上角开始划线,“奇次一穿而过,偶次穿而不过”膁函数蚈映射肅一般地,设是两个集合,如果按照某种对应法则,对于集合中的任何一个元素,在集合中都有惟一的元素和它对应,这样的对应叫做从集合到集合的映射,记作:。袄注:理解原象与象及其应用。艿(1)中每一个元素必有惟一的象;肇(2)对于中的不同的元素,在中可以有相同的象;螅(3)允许中元素没有原象。羅函数蚂定义:函数是由一个非空数集到时另一个非空数集的映射。薆函数的表示方法:列表法、图像法、解析式法。薅注:在解函数题时可以画出图像,运用数形结合的方法可以使大部分题目变得更简单。螃函数的三要素:定义域、值域、对应法则螀定义域的求法:使函数(的解析式)有意义的的取值范围芀主要依据:芆分母不能为0螄偶次根式的被开方式0膂特殊函数定义域虿肆薁芁聿值域的求法:的取值范围螆正比例函数:和一次函数:的值域为蚃二次函数:的值域求法:配方法。如果的取值范围不是则还需画图像荿反比例函数:的值域为蒈的值域为膇的值域求法:判别式法莄另求值域的方法:换元法、反函数法、不等式法、数形结合法、函数的单调性等等。莁解析式求法:薇在求函数解析式时可用换元法、构造法、待定系数法等。羇函数图像的变换膁平移蒀肆蚇翻折节袂螀函数的奇偶性膄定义域关于原点对称芄若奇若偶羀注:①若奇函数在处有意义,则腿②常值函数()为偶函数袄③既是奇函数又是偶函数肁函数的单调性聿对于且,若薈蚄增函数:值越大,函数值越大;值越小,函数值越小。膃减函数:值越大,函数值反而越小;值越小,函数值反而越大。蒁复合函数的单调性:羈与同增或同减时复合函数为增函数;与相异时(一增一减)复合函数为减函数。莅注:奇偶性和单调性同时出现时可用画图的方法判断。膄二次函数蕿(1)二次函数的三种解析式蒇①一般式:()膅②顶点式:(),其中为顶点羁③两根式:()

职高数学概念公式(最全) 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数36
  • 收藏数0 收藏
  • 顶次数0
  • 上传人花开一叶
  • 文件大小1.88 MB
  • 时间2019-05-20