2011高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): D
我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名): 重庆教育学院
参赛队员(打印并签名) :1. 王平
2. 王静
3. 王鸿玫
指导教师或指导教师组负责人(打印并签名): 施成湘
日期: 2011年 9 月11日
赛区评阅编号(由赛区组委会评阅前进行编号):
2011高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用):
评
阅
人
评
分
备
注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
论文题目:天然肠衣搭配问题
摘要
随着时代的发展,天然肠衣制作加工已经是我国的一个传统产业,在生产中占优很重要的地位。本文就是针对天然肠衣的加工问题展开讨论并建立相应的优化模型,本问题涉及到两方面内容:(一)方案的内容,(二)方案的个数。根据线性规划理论,建立双目标函数模型。从第四个条件肠衣有剩余的角度入题,即剩余的可以降级使用,我们立运筹学中的双目标函数列出了我们最初的模型原型,从而我们可以从中得出的比较合理优化的分配方案577种,在具体解决这个问题的时候,我们从第三种成品开始建立模型,得出初步方案367种,剩余降级使用的数目8根,将剩余的原料归纳到第二种成品中最长的原料中,再利用第二种成品建立模型得出初步方案107种,并得出剩余数目35根,同理降级到第一种成品最长的原料中使用;最终通过筛选得到的最优方案为第一类12种、第二类33种、第三类34种,从捆数上看则是192捆,详见文中总表。对于第三个条件中提出的为了提高利用率而允许有误差,条件是要在30分钟内得出最好的方案,为降低计算复杂度,算法对文中原材料的取定,是要求尽可能的少。通过运行,得出的最优的方案,见下表,
总方案数
剩余方案数
捆数
剩余根数
第一类产品
367
34
135
8
第二类产品
107
33
41
35
点三类产品
103
12
16
-----
此双目标函数模型很好的解决了天然肠衣的加工分配问题,且方法具有很强的严密性,提高了运算速度,缩短了安排时间,提高效率,能够广泛推广到其他材料的加工安排问题上。
关键词: 肠衣加工多目标线性规划
问题的提出
天然肠衣(以下简称肠衣)制作加工是我国的一个传统产业,出口量占世界首位。肠衣经过清洗整理后被分割成长度不等的小段(原料),进入组装工序。传统的生产方式依靠人工,边丈量原料长度边心算,将原材料按指定根数和总长度组装出成品(捆)。
原料按长度分档,,如:3-,-,其余的依此类推。表1是几种常见成品的规格,长度单位为米,∞表示没有上限,但实际长度小于26米。
表1 成品规格表
最短长度
最大长度
根数
总长度
3
20
89
7
8
89
14
∞
5
89
为了提高生产效率,公司计划改变组装工艺,先丈量所有原料,建立一个原料表。表2为某批次原料描述。
表2 原料描述表
长度
3-
-
4-
-
5-
-
6-
-
根数
43
59
39
41
27
28
34
21
长度
7-
-
8-
-
9-
-
10-
-
根数
24
24
20
25
21
23
21
18
长度
11-
-
12-
-
13-
-
14-
-
根数
31
23
22
59
18
25
35
29
长度
15-
天然肠衣搭配问题_论文定稿 来自淘豆网m.daumloan.com转载请标明出处.