大数据存储技术
刘雷1,杜鹏程2,贺俊铭3,孔庆春4,张莉莉5
1,2,3,4,5(清华大学计算机科学与技术系,北京 100084)
Abstract:Big data pared with the traditional data warehouse applications, with a large amount of data plex query analysis, etc. Big data storage because of its itself exists 4 v characteristics, the traditional storage technology can not meet the needs of large data storage, data resources through the ETL technology was extracted from the source system, and is converted into a standard format, then using NoSQL database for database access management, make full use of work cloud storage technology enterprise storage cost saving, efficiency advantage, through a work file system to store data information in the work resources, using visual operating interface to satisfy the user's data processing requirements at any time.
Key words: Data acquisition (ETL), data access (NoSQL), cloud storage, distributed file systems, visualization
摘要: 大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。大数据存储由于其本身存在的4V特征,传统的存储技术不能满足大数据存储的需要,通过ETL技术数据资源被从源系统中提取,并被转换为一个标准的格式,再使用NoSQL数据库进行数据库存取管理,充分利用网络云存储技术节约企业存储成本,提高效率的优势,通过分布式网络文件系统将数据信息存储在整个互联网络资源中,并用可视化的操作界面随时满足用户的数据处理需求。
关键词: 数据采集(ETL)、数据存取(NoSQL)、云存储、分布式文件系统、可视化
引言
在学术界,Nature早在2008年就推出了Big Data专刊[1]。munity Consortium)在2008年发表了报告《puting: Creating revolutionary breakthroughs merce, science, and society》[2],阐述了在数据驱动的研究背景下,解决大数据问题所需的技术以及面临的一些挑战。Science 在2011年2月推出专刊《Dealing with Data》[3],主要围绕着科学研究中大数据的问题展开讨论,说明大数据对于科学研究的重要性。美国一些知名的数据管理领域的专家学者则从专业的研究角度出发,联合发布了一份白皮书《Challenges and Opportunities with Big Data》[4]。该白皮书从学术的角度出发,介绍了大数据的产生,分析了大数据的处理流程,并提出大数据所面临的若干挑战。
业界通常用Volume、Variety、Value和Velocity(简称为“4V”,即数据体量巨大、数据类型繁多、价值密度低和处理速度快)四个特征来显著区分大数据与传统数据。
大数据技术是一个整体,没有统一的解决方案,本文从大数据生命周期过程的角度讨论了ETL技术、NoSQL、云存储、分布式系统、数据可视化等5个部分。
ETL技术
随着信息化进程的推进,人们对数据资源整合的需求越来越明显。但面对分散在不同地区、种类繁多的异构数据库进行数据整合并非易事,要解决冗余、歧义等脏数据的清洗问题,仅靠手工进行不但费时费力,质量也难以保证;另外,数据的定期更新也存在困难。如何实现业务系统数据整合,是摆在大数据面前的难题。ETL数据转换系统为数据整合提供了可靠的解决方案。
ETL是Extraction-Transformation-Loading的缩写,中文名称为数据提取、转换和加载。ETL负责将分布的、异构数据源中的数据如关系数据、平面数
大数据存储技术docx 来自淘豆网m.daumloan.com转载请标明出处.