,接收符号为Y={y1,y2},信道转移矩阵为,求:(1)信源X中事件x1和事件x2分别包含的自信息量;(2)收到消息yj(j=1,2)后,获得的关于xi(i=1,2)的信息量;(3)信源X和信宿Y的信息熵;(4)信道疑义度H(X/Y)和噪声熵H(Y/X);(5)接收到信息Y后获得的平均互信息量。解:1)2)3)4) 5),按阻值分70%是2KΩ,30%是5KΩ;按瓦分64%,。现已知2KΩ阻值的电阻中80%,问通过测量阻值可以得到的关于瓦数的平均信息量是多少?解:对本题建立数学模型如下:以下是求解过程:(1)若P(0)=3/4,P(1)=1/4,求H(X),H(X/Y),H(Y/X)和I(X;Y);(2)求该信道的信道容量及其达到信道容量时的输入概率分布;解:1) 2) ,其信道矩阵为。设该信源以1500二元符号/秒的速度传输输入符号。现有一消息序列共有14000个二元符号,并设P(0)=P(1)=1/2,问从消息传输的角度来考虑,10秒钟内能否将这消息序列无失真的传递完?解:信道容量计算如下:也就是说每输入一个信道符号,。已知信源输入1500二元符号/秒,那么每秒钟接收到的信息量是:现在需要传送的符号序列有140000个二元符号,并设P(0)=P(1)=1/2,可以计算出这个符号序列的信息量是要求10秒钟传完,也就是说每秒钟传输的信息量是1400bit/s,超过了信道每秒钟传输的能力(1288bit/s)。所以10秒内不能将消息序列无失真的传递完。 随堂练习:求下列
信息论习题4new 来自淘豆网m.daumloan.com转载请标明出处.