,直接应用。公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。:(a±b)2=a2±2ab+b2平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2ab+b2)=a3±(1)多项式平方公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc即:多项式平方等于各项平方和加上每两项积的2倍。(2)二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5…………注意观察右边展开式的项数、指数、系数、(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得a3+b3=(a+b)3-3ab(a+b)、立方和(差)公式引伸的公式(a+b)(a3-a2b+ab2-b3)=a4-b4(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6…………注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)=an-bn 由公式的推广③可知:当n为正整数时an-bn能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。、y满足x2+y2+=2x+y,求代数式的值。,y满足不等式x2+y2+1≤2x+2y,求x+y的值。:第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是(a>0,b>0);丙商场:第一次提价的百分率为b,第二次提价的百分率为a,则哪个商场提价最多?:(1)6(7+1)(72+1)(74+1)(78+1)+1;(2)××--×=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2-ab-bc-ca的值为()(m为任意实数),则P、Q的大小关系为()-13x+1=0,则x4+的个位数字是()(每两人间均赛一场),用x1,y1顺次表示第一号选手胜与负的场数;用x2,y
初一奥数专题讲义——完全平方公式与平方差公式 来自淘豆网m.daumloan.com转载请标明出处.