余弦定理
魏水祥
连城一中第十五届教育教学开放周数学组说课比赛课件
魏水祥
教法分析
学法指导
教学过程
板书设计
教材分析
评价分析
一、教材分析
,按照《普通高中数学课程标准》要求学生掌握余弦定理,能初步运用余弦定理解斜三角形。
本节内容是三角函数中的重要内容,是解决有关斜三角形问题以及应用问题的重要定理,同时也为判断三角形形状、证明三角形中的有关等式提供了重要依据。教材的安排是科学的,符合学生的认知规律,有助于提高学生的观察、发现、和推理能力。
根据教学内容和《普通高中数学课程标准》的要求,结合学生现有的认知水平,确定教学目标如下:
(1)知识与技能:使学生掌握余弦定理,能初步运用余弦定理解决一些简单的问题。
(2)过程与方法:通过用几何法和向量法推导余弦定理,提高学生对分类讨论、数形结合等数学思想方法的认识,通过运用余弦定理解斜三角形培养学生分析问题解决问题能力。
(3)情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;
、难点
根据新课标要求和学生的实际水平确定本节的重点难点如下:
重点:余弦定理的推导及应用。
难点:余弦定理的推导及应用。
二、教法分析
本节课采取启发式与探究式相结合的教学方法。
:启发式教学的核心是启发学生积极思维,引导他们主动获取知识,培养他们分析问题解决问题的能力。本节由实际问题引入创设情景,通过体验推导余弦定理的过程,培养学生观察、分析、归纳总结的能力。
:用计算机辅助教学,使抽象的问题变得形象直观,增大课容量,体现了数形结合的思想,提高了课堂效率。
:
本节主要借助一条问题链引导学生探究分析,运用创造性思维,培养学生分析问题解决问题的能力。具体步骤为:引入问题——分析总结——解决问题
创设情景导入新课
研讨探究得出定理
引申拓展应用体验
课堂小结收获成功
小试牛刀复习旧知
复习
设计意图:通过复习建立新旧知识间的联系,为引入新课做好准备。
小试牛刀复习旧知
说课:余弦定理课件 来自淘豆网m.daumloan.com转载请标明出处.