文 献 综 述1 引言在计算机视觉和模式识别领域,人脸识别技术(Face Recognition Technology,简称FRT)是极具挑战性的课题之一。近年来,随着相关技术的飞速发展和实际需求的日益增长,它已逐渐引起越来越多研究人员的关注。人脸识别在许多领域有实际的和潜在的应用,在诸如证件检验、银行系统、军队安全、安全检查等方面都有相当广阔的应用前景。人脸识别技术用于司法领域,作为辅助手段,进行身份验证,罪犯识别等;用于商业领域,如银行信用卡的身份识别、安全识别系统等等。正是由于人脸识别有着广阔的应用前景,它才越来越成为当前模式识别和人工智能领域的一个研究热点。虽然人类能够毫不费力的识别出人脸及其表情,但是人脸的机器自动识别仍然是一个高难度的课题。它牵涉到模式识别、图像处理及生理、心理等方面的诸多知识。与指纹、视网膜、虹膜、基因、声音等其他人体生物特征识别系统相比,人脸识别系统更加友好、直接,使用者也没有心理障碍。并且通过人脸的表情/姿态分析,还能获得其他识别系统难以获得的一些信息。自动人脸识别可以表述为:对给定场景的静态或视频序列图像,利用人脸数据库验证、比对或指认校验场景中存在的人像,同时可以利用其他的间接信息,比如人种、年龄、性别、面部表情、语音等,以减小搜索范围提高识别效率。自上世纪 90 年代以来,人脸识别研究得到了长足发展,国内外许多知名的理工大学及 TT 公司都成立了专门的人脸识别研究组,相关的研究综述见文献[1-3]。本文对近年来自动人脸识别研究进行了综述,分别从人脸识别涉及的理论,人脸检测与定位相关算法及人脸识别核心算法等方面进行了分类整理,并对具有典型意义的方法进行了较为详尽的分析对比。此外,本文还分析介绍了当前人脸识别的优势与困难。2 人脸识别相关理论图像是人们出生以来体验最丰富最重要的部分,图像可以以各种各样的形式出现,我们只有意识到不同种类图像的区别,才能更好的理解图像。要建立一套完整的人脸识别系统(Face ion System,简称 FRS),必然要综合运用以下几大学科领域的知识: 数字图像处理技术数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算南昌大学硕士学位论文文献综述—人脸识别技术研究机对其进行处理的过程,数字图像处理最早出现于 20 世纪 50 年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于 20 世纪 60 年代初期。与人类对视觉机理研究的历史相比,数字图像处理是一门相对年轻的学科,但在其短短的历史中,它却以不同程度的成功使用于几乎所有与成像有关的领域。目前,数字图像处理技术己被广泛应用于办公自动化、工业机器人、地理数据处理、医学数据处理、地球资源遥感、交互式计算机辅助设计等领域,尤其在机器视觉应用系统中成为关键技术之一。一般的图像都是模拟图像,对于模拟图像只能采用模拟处理方式进行处理,计算机不能接受和处理模拟信号,只有将连续的模拟信号变换为离散的数字信号,或者说将模拟图像变换为数字图像才能接受。数字图像处理就是对给定的数字图像进行某些变换的过程。对含有噪声的图像,要除去噪声、滤去干扰,提高信噪比;对信息微弱的图像要进行灰度变换等增强处理;对已经退化的模糊图像要进行各种复原的处理;对失真的图像要进行几何校正等变换。除此之外,图像的合成,图像的边缘提取与分割,图像的编码、压缩与传输,图像的分析等技术也属于图像处理的内容。由此可见,图像处理就是为了达到改善图像的质量,将图像变换成便于人们观察和适于机器识别的目的[4]。 神经网络人工神经网络是一门以对大脑的生理研究成果为基础,以用机器模拟大脑的某些生理与机制,实现某方面功能为目的的学科[6]。研究神经网络,特别是神经学习的机理,对认识和促进人自身发展有特殊的意义。神经网络有许多具有非线性映射能力的神经元组成,神经元之间通过权系数连接。网络的信息分布式就存在连接系数中,使网络具有很高的容错性和鲁棒性。神经网络技术已经被有效地用到组合优化、图像处理、模式识别、自动控制等方面。基于神经网络技术的人脸识别方法是人脸识别研究领域中的一大重要分支。 模式识别模式识别[7],就是通过计算机用数学技术方法来研究模式的自动处理和判读。这门学科使用计算机的方法实现人的模式识别能力,即对各种事物或现象进行分析、描述、判别和识别。在人脸识别中,如果是个人识别,则每一个人就是一个模式,预先存在数据库里的图像就是样本;如果是性别识别、种族识别或年龄识别,则不同的性别、种族或年龄就构成一个模式;如果是表情识别,则不同的表情就是一个模式。人脸识别重在讨论个人识第 1 页 15 页南昌大学硕士学位论文文献综述—人脸识别技术研究别,人脸识别的最终目的就是利用人脸
人脸识别文献综述解读 来自淘豆网m.daumloan.com转载请标明出处.