下载此文档

excel一元及多元线性回归实例.doc


文档分类:高等教育 | 页数:约11页 举报非法文档有奖
1/11
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/11 下载此文档
文档列表 文档介绍
野外实习资料的数理统计分析
一元线性回归分析
一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。如果两个变量的关系大致是线性的,那就是一元线性回归问题。
对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。
在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。对于这种线性关系,可以用数学公式表示:
Y = a + bX
这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X的回归方程。其中a为常数,b为Y对于X的回归系数。
对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。计算a与b值的公式为:
式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。n为样本数。
当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。
得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。r值的绝对值越大,两个变量之间的相关程度就越高。当r为正值时,叫做正相关,r为负值时叫做负相关。r 的计算公式如下:
式中各符号的意义同上。
在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。具体的检验方法在后面介绍。

一元回归研究的是一个自变量和一个因变量的各种关系。但是客观事物的变化往往受到多种因素的影响,即使其中有一个因素起着主导作用,但其它因素的作用也是不可忽视的。因此,我们还需要研究多种变量的关系,这种多个变量之间的关系就叫做多元回归问题。例如,水稻的产量不仅与生长期内的雨量有关,而且与温度也有关系。所以寻求水稻的产量不仅与生长期内的雨量之间的相互关系,就是多元回归问题。
如果假设自变量为X1,X2,…,Xm,因变量为Y,而且因变量与自变量之间是线性的关系,则因变量Y与自变量为X1,X2,…,Xm的多元线性回归方程为:
Y = a+b1X1+b2X2+…+bmXm
式中:a,b1,b2,bm为常数。
因此,只要能够求出a,b1,b2,…,bm这些常数,就可以得到因变量Y与自变量为X1,X2,…,Xm之间的多元回归方程。具体的算法比较简单,但很烦琐。这里不再叙述。求解多元回归的计算机程序很多,只要将自变量的数据以及与其相对应的因变量的数据输入计算机程序中,立刻就可以求出a,b1,b2,…,bm各常数的值,从而可以获得因变量Y与自变量为X1,X2,…,Xm的多元线性回归方程。
例如,设已知因变量Y的自变量X1,X2,X3,共得18组数据,并已知Y对Xi存在着线性关系,求其回归方程。
样品
X1
X2
X3
Y
1

53
158
64
2

23
163
60
3

19
37
71
4

34
157
61
5

24
59
54
6

65
123
77
7

44
46
81
8

31
117
93
9

29
173
93
10

58
112
51
11

37
111
76
12

46
114
96
13

50
134
77
14

44
73
93
15

56
168
95
16

36
143
54
17

58
202
168
18

51
124
99
通过求解,得到a===-=
所以,回归方程为
Y=+ X1 - X2+ X3
通常可采用单相关系数、偏相关系数和复相关系数来说明这三个自变量与因变量之间是否有明显的线性关系以及它们之间相关的程度如何。单相关系数是指在不考虑其他因素影响的条件下,所求两个变量之间的相关系数。用rX1X2、rYX1和rYX2分别表示X1和X2、Y和X1以及Y与X2之间的单相关系数

excel一元及多元线性回归实例 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数11
  • 收藏数0 收藏
  • 顶次数0
  • 上传人xxj16588
  • 文件大小0 KB
  • 时间2015-12-30