下载此文档

算法图像重构.ppt


文档分类:IT计算机 | 页数:约51页 举报非法文档有奖
1/51
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/51 下载此文档
文档列表 文档介绍
算法图像重构---putedTomography,CT)是通过对物体进行不同角度的射线投影测量来获取物体横截面信息的成像技术。CT的核心技术是由投影数据来重建图像的理论,其实质是由扫描所得到的的投影数据来求出成像平面上每个点的衰减系数值。二维投影与CT值当强度为的x-ray通过吸收率为μ(x,y)的均匀吸收物体,由于均匀吸收,则I必是指数下降,则有这里s表示射线经过的体内距离长度1、我们假设切片(物体横截面,断面)无限薄。 2、我们认为,一幅图像在任意点(x,y)上的灰度值 正比于那个点的相对线性衰减系数μ(x,y)。CT任意角度扫描经坐标系旋转变换后可得:所以所谓投影是测量值,是吸收系数沿着射线经过直线的积分。实际上的问题是沿着若干条直线的积分估算值来计算μ(x,y)值。而对于任意角度扫描,需要用旋转坐标来描述问题,建立置于扫描系统之上的旋转坐标系,即让射线束与旋转坐标系的轴平行:所以θ角每旋转1度就可以取一组投影数据,可得到180组不同的投影。CT就是在收集各角度θ的投影数据后,利用重建算法处理得到物体的图像。是离散值,是测出值!Radon变换Radon变换是计算图像在某一指定角度射线方向上的投影的变换方法。二维函数f(x,y)的投影是其在确定方向上的线积分,如下图所示,二维函数f(x,y)在水平方向的线积分就是f(x,y)在y轴上的投影,二维函数f(x,y)在垂直方向的线性积分就是f(x,y)在x轴上的投影。Radon变换(续)由此,可以沿任意角度计算函数的投影,计算图像f(x,y)在任意角度的Radon变换。中心切片定理密度函数在某一方向上的投影函数的一维傅立叶变换函数是原密度函数的二维傅立叶变换函数在平面上沿同一方向且过原点的直线上值。滤波反投影算法的原理1、在不同的角度下取得足够多的投影数据(Radon变换)2、将这些投影数据做一维的Fourier变换,那么变换后的这些数据将充满整个(u,v)平面。(许多过原点成不同夹角的直线)3、也就是说,F(u,v)的全部值都为已知,那么我们将其做一次二维的Fourier逆变换就可以得到原始的衰减系数函数f(x,y)二维傅立叶反变换作坐标变换,令:可得出:表示对投影函数的Fourier变换进行滤波变换,其中是滤波函数。,可以采取两步:首先将投影数据和响应脉冲滤波器进行卷积,然后由式对不同旋转角θ求和,就能实现图像重建。这就是卷积法进行图像重建的基本思路和方法。卷积可看作一种滤波手段,卷积投影相当于对数据先滤波再将结果逆投影回来,这样可以使模糊得到校正。所以:式中h(R)为滤波函数纠的空域形式

算法图像重构 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数51
  • 收藏数0 收藏
  • 顶次数0
  • 上传人文库新人
  • 文件大小2.63 MB
  • 时间2019-10-12